traffic data
Recently Published Documents


TOTAL DOCUMENTS

1553
(FIVE YEARS 543)

H-INDEX

39
(FIVE YEARS 9)

2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Ying Zhuo ◽  
Lan Yan ◽  
Wenbo Zheng ◽  
Yutian Zhang ◽  
Chao Gou

Autonomous driving has become a prevalent research topic in recent years, arousing the attention of many academic universities and commercial companies. As human drivers rely on visual information to discern road conditions and make driving decisions, autonomous driving calls for vision systems such as vehicle detection models. These vision models require a large amount of labeled data while collecting and annotating the real traffic data are time-consuming and costly. Therefore, we present a novel vehicle detection framework based on the parallel vision to tackle the above issue, using the specially designed virtual data to help train the vehicle detection model. We also propose a method to construct large-scale artificial scenes and generate the virtual data for the vision-based autonomous driving schemes. Experimental results verify the effectiveness of our proposed framework, demonstrating that the combination of virtual and real data has better performance for training the vehicle detection model than the only use of real data.


2022 ◽  
Author(s):  
Jamal Raiyn

Abstract The development of 5G has enabled the autonomous vehicles (AVs) to have full control over all functions. The AV acts autonomously and collects travel data based on various smart devices and sensors, with the goal of enabling it to operate under its own power. However, the collected data is affected by several sources that degrade the forecasting accuracy. To manage large amounts of traffic data in different formats, a computational data science approach (CDS) is proposed. The computational data science scheme introduced to detect anomalies in traffic data that negatively affect traffic efficiency. The combination of data science and advanced artificial intelligence techniques, such as deep leaning provides higher degree of data anomalies detection which leads to reduce traffic congestion and vehicular queuing. The main contribution of the CDS approach is summarized in detection of the factors that caused data anomalies early to avoid long- term traffic congestions. Moreover, CDS indicated a promoting results in various road traffic scenarios.


2022 ◽  
Vol 2 (1) ◽  
Author(s):  
Yalong Pi ◽  
Nick Duffield ◽  
Amir H. Behzadan ◽  
Tim Lomax

AbstractAccurate and prompt traffic data are necessary for the successful management of major events. Computer vision techniques, such as convolutional neural network (CNN) applied on video monitoring data, can provide a cost-efficient and timely alternative to traditional data collection and analysis methods. This paper presents a framework designed to take videos as input and output traffic volume counts and intersection turning patterns. This framework comprises a CNN model and an object tracking algorithm to detect and track vehicles in the camera’s pixel view first. Homographic projection then maps vehicle spatial-temporal information (including unique ID, location, and timestamp) onto an orthogonal real-scale map, from which the traffic counts and turns are computed. Several video data are manually labeled and compared with the framework output. The following results show a robust traffic volume count accuracy up to 96.91%. Moreover, this work investigates the performance influencing factors including lighting condition (over a 24-h-period), pixel size, and camera angle. Based on the analysis, it is suggested to place cameras such that detection pixel size is above 2343 and the view angle is below 22°, for more accurate counts. Next, previous and current traffic reports after Texas A&M home football games are compared with the framework output. Results suggest that the proposed framework is able to reproduce traffic volume change trends for different traffic directions. Lastly, this work also contributes a new intersection turning pattern, i.e., counts for each ingress-egress edge pair, with its optimization technique which result in an accuracy between 43% and 72%.


2022 ◽  
Vol 155 ◽  
pp. 210-239
Author(s):  
Mike Pereira ◽  
Pinar Boyraz Baykas ◽  
Balázs Kulcsár ◽  
Annika Lang

2022 ◽  
Vol 10 (1) ◽  
pp. 1-12
Author(s):  
Iftekhar Hossain ◽  
Naushin Nower

Traffic jam is increasingly aggravating in almost every urban area. Traffic forecast, traffic modeling, visualization can help to provide appropriate route and time for traveling and thus provides a significant impact on traffic jam reduction. For traffic forecasting, modeling and visualization, city-wide traffic data collection and analysis are needed, which is still challenging in many aspects. This paper aims to develop a tool for acquiring and processing traffic data from Google Maps that can be used for forecasting, modeling, and visualization. Dhaka city is used as a case study since there is no infrastructure available for traffic data collection. The traffic flow intensity of the road is analyzed to determine the congestion of the road. The flow intensity is used for traffic modeling, visualization, traffic prediction and many more.


2021 ◽  
Vol 15 (2) ◽  
pp. 176
Author(s):  
Eka Permatasari ◽  
Rushendra Rushendra

<p>Dalam sebuah perusahaan penyedia layanan jaringan internet, di tuntut untuk memiliki<br />kulitas jaringan <em>high availability</em> dan <em>high reliability</em>. Dalam mendukung kualifikasi<br />jaringan internet terbaik maka salah satunya perlu menjaga kestabilan bandwidth<br />internet pelanggan. Salah satunya menjaga kepadatan traffic data pada jaringan internet.<br /><em>Congestion</em> merupakan pengumpulan paket data yang melebihi kapasitas bandwidth<br />yang tersedia padasebuah link, hal ini memberikan dampak penurunan kinerja jaringan<br />internet. Permasalahan di atas dapat di selesaikan salah satunya dengan menerapkan<br />penggunaan metode <em>link aggregation</em> dan teknologi <em>load balance</em>. Pada penelitian ini<br />penulis menerapkan metode <em>link aggregation</em> yang digunakan dalam merancang<br /><em>redundancy link</em> dan <em>load balance</em> dalam membuat skema membagi traffic untuk<br />penyeimbang beban berdasarkan <em>src address</em> dan <em>src port</em>, serta <em>dst address</em> dan <em>dst</em><br /><em>port.</em> Dari hasil pengujian penggunaan <em>link aggregation</em> dan <em>load balance</em> pada<br />penenlitian ini dapat membantu menjaga kestabilan throughput dengan nilai pengukuran<br />sebesar 10GB dengan standart MTU (<em>Maximum Transmission Unit</em>) yang menandakan<br />hasil test pengukuran paket data terbesar yang dapat di transmisikan melalui sebuah<br />jaringan.</p><p><br /><em><strong>Keyword</strong> : link aggregation, load balance, congestion, MTU</em></p>


Author(s):  
Wenrui Huang ◽  
Kai Yin ◽  
Mahyar Ghorbanzadeh ◽  
Eren Ozguven ◽  
Sudong Xu ◽  
...  

AbstractAn integrated storm surge modeling and traffic analysis were conducted in this study to assess the effectiveness of hurricane evacuations through a case study of Hurricane Irma. The Category 5 hurricane in 2017 caused a record evacuation with an estimated 6.8 million people relocating statewide in Florida. The Advanced Circulation (ADCIRC) model was applied to simulate storm tides during the hurricane event. Model validations indicated that simulated pressures, winds, and storm surge compared well with observations. Model simulated storm tides and winds were used to estimate the area affected by Hurricane Irma. Results showed that the storm surge and strong wind mainly affected coastal counties in south-west Florida. Only moderate storm tides (maximum about 2.5 m) and maximum wind speed about 115 mph were shown in both model simulations and Federal Emergency Management Agency (FEMA) post-hurricane assessment near the area of hurricane landfall. Storm surges did not rise to the 100-year flood elevation level. The maximum wind was much below the design wind speed of 150–170 mph (Category 5) as defined in Florida Building Code (FBC) for south Florida coastal areas. Compared with the total population of about 2.25 million in the six coastal counties affected by storm surge and Category 1–3 wind, the statewide evacuation of approximately 6.8 million people was found to be an over-evacuation due mainly to the uncertainty of hurricane path, which shifted from south-east to south-west Florida. The uncertainty of hurricane tracks made it difficult to predict the appropriate storm surge inundation zone for evacuation. Traffic data were used to analyze the evacuation traffic patterns. In south-east Florida, evacuation traffic started 4 days before the hurricane’s arrival. However, the hurricane path shifted and eventually landed in south-west Florida, which caused a high level of evacuation traffic in south-west Florida. Over-evacuation caused Evacuation Traffic Index (ETI) to increase to 200% above normal conditions in some sections of highways, which reduced the effectiveness of evacuation. Results from this study show that evacuation efficiency can be improved in the future by more accurate hurricane forecasting, better public awareness of real-time storm surge and wind as well as integrated storm surge and evacuation modeling for quick response to the uncertainty of hurricane forecasting.


2021 ◽  
Vol 7 (1) ◽  
pp. 2
Author(s):  
Isaac Oyeyemi Olayode ◽  
Alessandro Severino ◽  
Lagouge Kwanda Tartibu ◽  
Fabio Arena ◽  
Ziya Cakici

In the last few years, there has been a significant rise in the number of private vehicles ownership, migration of people from rural areas to urban cities, and the rise in the number of under-maintained freeways; all these have added to the perennial problem of traffic congestion. Traffic flow prediction has been recognized as the solution in alleviating and reducing the problem of traffic congestion. In this research, we developed an adaptive neuro-fuzzy inference system trained by particle swarm optimization (ANFIS-PSO) by performing an evaluative performance of the model through traffic flow modelling of vehicles on five freeways (N1,N3,N12,N14 and N17) using South Africa Transportation System as a case study. Six hundred and fifty (650) traffic data were collected using inductive loop detectors and video cameras from the five freeways. The traffic data used for developing these models comprises traffic volume, traffic density, speed of vehicles, time, and different types of vehicles. The traffic data were divided into 70% and 30% for the training and validation of the model. The model results show a positively correlated optimal performance between the inputs and the output with a regression value R2  of 0.9978 and 0.9860 for the training and testing. The result of this research shows that the soft computing model ANFIS-PSO used in this research can model vehicular traffic flow on freeways. Furthermore, the evidence from this research suggests that the on-peak and off-peak hours are significant determinants of vehicular traffic flow on freeways. The modelling approach developed in this research will assist urban planners in developing practical ways to tackle traffic congestion and assist motorists and pedestrians in travel behaviour decision-making. Finally, the approach used in this study will assist transportation engineers in making constructive and safety dependent guidelines for drivers and pedestrians on freeways.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Shaohua Liu ◽  
Shijun Dai ◽  
Jingkai Sun ◽  
Tianlu Mao ◽  
Junsuo Zhao ◽  
...  

Predicting traffic data on traffic networks is essential to transportation management. It is a challenging task due to the complicated spatial-temporal dependency. The latest studies mainly focus on capturing temporal and spatial dependencies with spatially dense traffic data. However, when traffic data become spatially sparse, existing methods cannot capture sufficient spatial correlation information and thus fail to learn the temporal periodicity sufficiently. To address these issues, we propose a novel deep learning framework, Multi-component Spatial-Temporal Graph Attention Convolutional Networks (MSTGACN), for traffic prediction, and we successfully apply it to predicting traffic flow and speed with spatially sparse data. MSTGACN mainly consists of three independent components to model three types of periodic information. Each component in MSTGACN combines dilated causal convolution, graph convolution layer, and the weight-shared graph attention layer. Experimental results on three real-world traffic datasets, METR-LA, PeMS-BAY, and PeMSD7-sparse, demonstrate the superior performance of our method in the case of spatially sparse data.


Sign in / Sign up

Export Citation Format

Share Document