Dynamic Task Scheduling Problem Based on Grey Wolf Optimization Algorithm

Author(s):  
Sasmita Kumari Nayak ◽  
Chandra Sekhar Panda ◽  
Sasmita Kumari Padhy
2019 ◽  
Vol 11 (6) ◽  
pp. 121 ◽  
Author(s):  
Ling Xu ◽  
Jianzhong Qiao ◽  
Shukuan Lin ◽  
Wanting Zhang

Volunteer computing (VC) is a distributed computing paradigm, which provides unlimited computing resources in the form of donated idle resources for many large-scale scientific computing applications. Task scheduling is one of the most challenging problems in VC. Although, dynamic scheduling problem with deadline constraint has been extensively studied in prior studies in the heterogeneous system, such as cloud computing and clusters, these algorithms can’t be fully applied to VC. This is because volunteer nodes can get offline whenever they want without taking any responsibility, which is different from other distributed computing. For this situation, this paper proposes a dynamic task scheduling algorithm for heterogeneous VC with deadline constraint, called deadline preference dispatch scheduling (DPDS). The DPDS algorithm selects tasks with the nearest deadline each time and assigns them to volunteer nodes (VN), which solves the dynamic task scheduling problem with deadline constraint. To make full use of resources and maximize the number of completed tasks before the deadline constraint, on the basis of the DPDS algorithm, improved dispatch constraint scheduling (IDCS) is further proposed. To verify our algorithms, we conducted experiments, and the results show that the proposed algorithms can effectively solve the dynamic task assignment problem with deadline constraint in VC.


2020 ◽  
Vol 19 (01) ◽  
pp. 1-14
Author(s):  
Jiuchun Gu ◽  
Tianhua Jiang ◽  
Huiqi Zhu ◽  
Chao Zhang

The workshop scheduling has historically emphasized the production metrics without involving any environmental considerations. Low-carbon scheduling has attracted the attention of many researchers after the promotion of green manufacturing. In this paper, we investigate the low-carbon scheduling problem in a job shop environment. A mathematical model is first established with the objective to minimize the sum of energy-consumption cost and completion-time cost. A discrete genetic-grey wolf optimization algorithm (DGGWO) is developed to solve the problem in this study. According to the characteristics of the problem, a job-based encoding method is first employed. Then a heuristic approach and the random generation rule are combined to fulfill the population initialization. Based on the original GWO, a discrete individual updating method the crossover operation of the genetic algorithm is adopted to make the algorithm directly work in a discrete domain. Meanwhile, a mutation operator is adopted to enhance the population diversity and avoid the algorithm from getting trapped into the local optima. In addition, a variable neighborhood search is embedded to further improve the search ability. Finally, extensive simulations are conducted based on 43 benchmark instances. The experimental data demonstrate that the proposed algorithm can yield better results than the other published algorithms.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Tianhua Jiang ◽  
Chao Zhang ◽  
Huiqi Zhu ◽  
Guanlong Deng

Workshop scheduling has mainly focused on the performances involving the production efficiency, such as times and quality, etc. In recent years, environmental metrics have attracted the attention of many researchers. In this study, an energy-efficient job shop scheduling problem is considered, and a grey wolf optimization algorithm with double-searching mode (DMGWO) is proposed with the objective of minimizing the total cost of energy-consumption and tardiness. Firstly, the algorithm starts with a discrete encoding mechanism, and then a heuristic algorithm and the random rule are employed to implement the population initialization. Secondly, a new framework with double-searching mode is developed for the GWO algorithm. In the proposed DMGWO algorithm, besides of the searching mode of the original GWO, a random seeking mode is added to enhance the global search ability. Furthermore, an adaptive selection operator of the two searching modes is also presented to coordinate the exploration and exploitation. In each searching mode, a discrete updating method of individuals is designed by considering the discrete characteristics of the scheduling solution, which can make the algorithm directly work in a discrete domain. In order to further improve the solution quality, a local search strategy is embedded into the algorithm. Finally, extensive simulations demonstrate the effectiveness of the proposed DMGWO algorithm for solving the energy-efficient job shop scheduling problem based on 43 benchmarks.


Sign in / Sign up

Export Citation Format

Share Document