grey wolf
Recently Published Documents





Rana Jassim Mohammed ◽  
Enas Abbas Abed ◽  
Mostafa Mahmoud El-gayar

<p>Wireless networks are currently used in a wide range of healthcare, military, or environmental applications. Wireless networks contain many nodes and sensors that have many limitations, including limited power, limited processing, and narrow range. Therefore, determining the coordinates of the location of a node of the unknown location at a low cost and a limited treatment is one of the most important challenges facing this field. There are many meta-heuristic algorithms that help in identifying unknown nodes for some known nodes. In this manuscript, hybrid metaheuristic optimization algorithms such as grey wolf optimization and salp swarm algorithm are used to solve localization problem of internet of things (IoT) sensors. Several experiments are conducted on every meta-heuristic optimization algorithm to compare them with the proposed method. The proposed algorithm achieved high accuracy with low error rate (0.001) and low power <br />consumption.</p>

Randa Jalaa Yahya ◽  
Nizar Hadi Abbas

A newly hybrid nature-inspired algorithm called HSSGWOA is presented with the combination of the salp swarm algorithm (SSA) and grey wolf optimizer (GWO). The major idea is to combine the salp swarm algorithm's exploitation ability with the grey wolf optimizer's exploration ability to generate both variants' strength. The proposed algorithm uses to tune the parameters of the integral sliding mode controller (ISMC) that design to improve the dynamic performance of the two-link flexible joint manipulator. The efficiency and the capability of the proposed hybrid algorithm are evaluated based on the selected test functions. It is clear that when compared to other algorithms like SSA, GWO, differential evolution (DE), gravitational search algorithm (GSA), particles swarm optimization (PSO), and whale optimization algorithm (WOA). The ISMC parameters were tuned using the SSA, which was then compared to the HSSGWOA algorithm. The simulation results show the capabilities of the proposed algorithm, which gives an enhancement percentage of 57.46% compared to the standard algorithm for one of the links, and 55.86% for the other.

Ali Iqbal Abbas ◽  
Afaneen Anwer

The aim of this work is to solve the unit commitment (UC) problem in power systems by calculating minimum production cost for the power generation and finding the best distribution of the generation among the units (units scheduling) using binary grey wolf optimizer based on particle swarm optimization (BGWOPSO) algorithm. The minimum production cost calculating is based on using the quadratic programming method and represents the global solution that must be arriving by the BGWOPSO algorithm then appearing units status (on or off). The suggested method was applied on “39 bus IEEE test systems”, the simulation results show the effectiveness of the suggested method over other algorithms in terms of minimizing of production cost and suggesting excellent scheduling of units.

Kybernetes ◽  
2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Hanieh Shambayati ◽  
Mohsen Shafiei Nikabadi ◽  
Seyed Mohammad Ali Khatami Firouzabadi ◽  
Mohammad Rahmanimanesh ◽  
Sara Saberi

PurposeSupply chains (SCs) have been growingly virtualized in response to the market challenges and opportunities that are presented by new and cost-effective internet-based technologies today. This paper designed a virtual closed-loop supply chain (VCLSC) network based on multiperiod, multiproduct and by using the Internet of Things (IoT). The purpose of the paper is the optimization of the VCLSC network.Design/methodology/approachThe proposed model considers the maximization of profit. For this purpose, costs related to virtualization such as security, energy consumption, recall and IoT facilities along with the usual costs of the SC are considered in the model. Due to real-world demand fluctuations, in this model, demand is considered fuzzy. Finally, the problem is solved using the Grey Wolf algorithm and Firefly algorithm. A numerical example and sensitivity analysis on the main parameters of the model are used to describe the importance and applicability of the developed model.FindingsThe findings showed that the Firefly algorithm performed better and identified more profit for the SC in each period. Also, the results of the sensitivity analysis using the IoT in a VCLSC showed that the profit of the virtual supply chain (VSC) is higher compared to not using IoT due to tracking defective parts and identifying reversible products. In proposed model, chain members can help improve chain operations by tracking raw materials and products, delivering products faster and with higher quality to customers, bringing a new level of SC efficiency to industries. As a result, VSCs can be controlled, programmed and optimized remotely over the Internet based on virtual objects rather than direct observation.Originality/valueThere are limited researches on designing and optimizing the VCLSC network. This study is one of the first studies that optimize the VSC networks considering minimization of virtual costs and maximization of profits. In most researches, the theory of VSC and its advantages have been described, while in this research, mathematical optimization and modeling of the VSC have been done, and it has been tried to apply SC virtualization using the IoT. Considering virtual costs in VSC optimization is another originality of this research. Also, considering the uncertainty in the SC brings the issue closer to the real world. In this study, virtualization costs including security, recall and energy consumption in SC optimization are considered.HighlightsInvestigates the role of IoT for virtual supply chain profit optimization and mathematical optimization of virtual closed-loop supply chain (VCLSC) based on multiperiod, multiproduct with emphasis on using the IoT under uncertainty.Considering the most important costs of virtualization of supply chain include: cost of IoT information security, cost of IoT energy consumption, cost of recall the production department, cost of IoT facilities.Selection of the optimal suppliers in each period and determination of the price of each returned product in virtual supply chain.Solving and validating the proposed model with two meta-heuristic algorithms (the Grey Wolf algorithm and Firefly algorithm).

Kazem Meidani ◽  
AmirPouya Hemmasian ◽  
Seyedali Mirjalili ◽  
Amir Barati Farimani

Courtney C. Irvine ◽  
Seth G. Cherry ◽  
Brent R. Patterson

Sign in / Sign up

Export Citation Format

Share Document