Towards approaching near-optimal MIMO detection performance ONAC-programmable baseband processor

Author(s):  
Ubaid Ahmad ◽  
Min Li ◽  
Amir Amin ◽  
Meng Li ◽  
Liesbet Van der Perre ◽  
...  
2021 ◽  
Author(s):  
SOURAV CHAKRABORTY ◽  
Nirmalendu Bikas Sinha ◽  
Monojit Mitra

Abstract This paper presents a low complexity pairwise layered tabu search (PLTS) based detection algorithm for a large-scale multiple-input multiple-output (MIMO) system. The proposed algorithm can compute two layers simultaneously and reduce the effective number of tabu searches. A metric update strategy is developed to reuse the computations from past visited layers. Also, a precomputation technique is adapted to reduce the redundancy in computation within tabu search iterations. Complexity analysis shows that the upper bound of initialization complexity in the proposed algorithm reduces from O(Nt4) to O(Nt3). The detection performance of the proposed detector is almost the same as the conventional complex version of LTS for 64QAM and 16QAM modulations. However, the proposed detector outperforms the conventional system for 4QAM modulation, especially in 16x16 and 8x8 MIMO. Simulation results show that the per cent of complexity reduction in the proposed method is approximately 75% for 64x64, 64QAM and 85% for 64x64 16QAM systems to achieve a BER of 10-3. Moreover, we have proposed a layer-dependent iteration number that can further reduce the upper bound of complexity with minor degradation in detection performance.


Author(s):  
Alva Kosasih ◽  
Vera Miloslavskaya ◽  
Wibowo Hardjawana ◽  
Victor Andrean ◽  
Branka Vucetic

2013 ◽  
Vol 61 (23) ◽  
pp. 5878-5892 ◽  
Author(s):  
Ubaid Ahmad ◽  
Min Li ◽  
Raf Appeltans ◽  
Hoang Duy Nguyen ◽  
Amir Amin ◽  
...  

2020 ◽  
Vol 55 (2) ◽  
pp. 505-519 ◽  
Author(s):  
Guiqiang Peng ◽  
Leibo Liu ◽  
Sheng Zhou ◽  
Shouyi Yin ◽  
Shaojun Wei

2020 ◽  
Vol 2020 (10) ◽  
pp. 310-1-310-7
Author(s):  
Khalid Omer ◽  
Luca Caucci ◽  
Meredith Kupinski

This work reports on convolutional neural network (CNN) performance on an image texture classification task as a function of linear image processing and number of training images. Detection performance of single and multi-layer CNNs (sCNN/mCNN) are compared to optimal observers. Performance is quantified by the area under the receiver operating characteristic (ROC) curve, also known as the AUC. For perfect detection AUC = 1.0 and AUC = 0.5 for guessing. The Ideal Observer (IO) maximizes AUC but is prohibitive in practice because it depends on high-dimensional image likelihoods. The IO performance is invariant to any fullrank, invertible linear image processing. This work demonstrates the existence of full-rank, invertible linear transforms that can degrade both sCNN and mCNN even in the limit of large quantities of training data. A subsequent invertible linear transform changes the images’ correlation structure again and can improve this AUC. Stationary textures sampled from zero mean and unequal covariance Gaussian distributions allow closed-form analytic expressions for the IO and optimal linear compression. Linear compression is a mitigation technique for high-dimension low sample size (HDLSS) applications. By definition, compression strictly decreases or maintains IO detection performance. For small quantities of training data, linear image compression prior to the sCNN architecture can increase AUC from 0.56 to 0.93. Results indicate an optimal compression ratio for CNN based on task difficulty, compression method, and number of training images.


2009 ◽  
Vol 2128 (1) ◽  
pp. 161-172 ◽  
Author(s):  
Dan Middleton ◽  
Ryan Longmire ◽  
Darcy M. Bullock ◽  
James R. Sturdevant

Sign in / Sign up

Export Citation Format

Share Document