On the Finite-User Stability Region of Slotted ALOHA with Cooperative Users

Author(s):  
C.-K. Lin ◽  
Y.-W. P. Hong
1994 ◽  
Vol 26 (02) ◽  
pp. 498-515 ◽  
Author(s):  
Wojciech Szpankowski

We consider the standard slotted ALOHA system with a finite number of buffered users. Stability analysis of such a system was initiated by Tsybakov and Mikhailov (1979). Since then several bounds on the stability region have been established; however, the exact stability region is known only for the symmetric system and two-user ALOHA. This paper proves necessary and sufficient conditions for stability of the ALOHA system. We accomplish this by means of a novel technique based on three simple observations: applying mathematical induction to a smaller copy of the system, isolating a single queue for which Loynes' stability criteria is adopted, and finally using stochastic dominance to verify the required stationarity assumptions in the Loynes criterion. We also point out that our technique can be used to assess stability regions for other multidimensional systems. We illustrate it by deriving stability regions for buffered systems with conflict resolution algorithms (see also Georgiadis and Szpankowski (1992) for similar approach applied to stability of token-passing rings).


1994 ◽  
Vol 26 (2) ◽  
pp. 498-515 ◽  
Author(s):  
Wojciech Szpankowski

We consider the standard slotted ALOHA system with a finite number of buffered users. Stability analysis of such a system was initiated by Tsybakov and Mikhailov (1979). Since then several bounds on the stability region have been established; however, the exact stability region is known only for the symmetric system and two-user ALOHA. This paper proves necessary and sufficient conditions for stability of the ALOHA system. We accomplish this by means of a novel technique based on three simple observations: applying mathematical induction to a smaller copy of the system, isolating a single queue for which Loynes' stability criteria is adopted, and finally using stochastic dominance to verify the required stationarity assumptions in the Loynes criterion. We also point out that our technique can be used to assess stability regions for other multidimensional systems. We illustrate it by deriving stability regions for buffered systems with conflict resolution algorithms (see also Georgiadis and Szpankowski (1992) for similar approach applied to stability of token-passing rings).


2012 ◽  
Vol 58 (9) ◽  
pp. 5841-5855 ◽  
Author(s):  
Charles Bordenave ◽  
David McDonald ◽  
Alexandre Proutiere

2011 ◽  
Vol 31 (4) ◽  
pp. 897-900
Author(s):  
Fei FANG ◽  
Yu-ming MAO ◽  
Su-peng LENG ◽  
Jian-bing MAO

2003 ◽  
Vol 3 ◽  
pp. 266-270
Author(s):  
B.H. Khudjuyerov ◽  
I.A. Chuliev

The problem of the stability of a two-phase flow is considered. The solution of the stability equations is performed by the spectral method using polynomials of Chebyshev. A decrease in the stability region gas flow with the addition of particles of the solid phase. The analysis influence on the stability characteristic of Stokes and Archimedes forces.


Sign in / Sign up

Export Citation Format

Share Document