The influence of the Stokes and Archimedes forces on the stability of a two-phase flow

2003 ◽  
Vol 3 ◽  
pp. 266-270
Author(s):  
B.H. Khudjuyerov ◽  
I.A. Chuliev

The problem of the stability of a two-phase flow is considered. The solution of the stability equations is performed by the spectral method using polynomials of Chebyshev. A decrease in the stability region gas flow with the addition of particles of the solid phase. The analysis influence on the stability characteristic of Stokes and Archimedes forces.

2010 ◽  
Vol 29-32 ◽  
pp. 658-663
Author(s):  
Chuan Jun Li ◽  
Gang Yu ◽  
Xin Wang

In order to acquire the solid-fluid two phase flow centrifugal pump’s slurry head according with the fact, the solid phase effect coefficient must be calculated precisely. By analysising the acting forces on the solid particle, its moving differential equation was established. And the calculating formula of the solid phase effect coefficient was deduced based on the equation. For the sake of verifying its validity, a test of contrast and comparison on the calculating slurry heads by some ways was carried out. The results shows that the relative error values of the slurry head calculated are less than 2.00% with a small and stably error band. The method has the advantage of simple calculating process, high accuracy, low randomness and good practicability.


2021 ◽  
Author(s):  
Ekhwaiter Abobaker ◽  
Abadelhalim Elsanoose ◽  
Mohammad Azizur Rahman ◽  
Faisal Khan ◽  
Amer Aborig ◽  
...  

Abstract Perforation is the final stage in well completion that helps to connect reservoir formations to wellbores during hydrocarbon production. The drilling perforation technique maximizes the reservoir productivity index by minimizing damage. This can be best accomplished by attaining a better understanding of fluid flows that occur in the near-wellbore region during oil and gas operations. The present work aims to enhance oil recovery by modelling a two-phase flow through the near-wellbore region, thereby expanding industry knowledge about well performance. An experimental procedure was conducted to investigate the behavior of two-phase flow through a cylindrical perforation tunnel. Statistical analysis was coupled with numerical simulation to expand the investigation of fluid flow in the near-wellbore region that cannot be obtained experimentally. The statistical analysis investigated the effect of several parameters, including the liquid and gas flow rate, liquid viscosity, permeability, and porosity, on the injection build-up pressure and the time needed to reach a steady-state flow condition. Design-Expert® Design of Experiments (DoE) software was used to determine the numerical simulation runs using the ANOVA analysis with a Box-Behnken Design (BBD) model and ANSYS-FLUENT was used to analyses the numerical simulation of the porous media tunnel by applying the volume of fluid method (VOF). The experimental data were validated to the numerical results, and the comparison of results was in good agreement. The numerical and statistical analysis demonstrated each investigated parameter’s effect. The permeability, flow rate, and viscosity of the liquid significantly affect the injection pressure build-up profile, and porosity and gas flow rate substantially affect the time required to attain steady-state conditions. In addition, two correlations obtained from the statistical analysis can be used to predict the injection build-up pressure and the required time to reach steady state for different scenarios. This work will contribute to the clarification and understanding of the behavior of multiphase flow in the near-wellbore region.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 2088
Author(s):  
Wael Ahmed ◽  
Adib Fatayerji ◽  
Ahmed Elsaftawy ◽  
Marwan Hassan ◽  
David Weaver ◽  
...  

Evaluating the two-phase flow parameters across tube bundles is crucial to the analysis of vibration excitation mechanisms. These parameters include the temporal and local variation of void fraction and phase redistribution. Understanding these two-phase parameters is essential to evaluating the stability threshold of tube bundle configurations. In this work, capacitance sensor probes were designed using finite element analysis to ensure high sensor sensitivity and optimum response. A simulation-based approach was used to calibrate and increase the accuracy of the void fraction measurement. The simulation results were used to scale the normalized capacitance and minimize the sensor uncertainty to ±5%. The sensor and required conditioning circuits were fabricated and tested for measuring the instantaneous void fraction in a horizontal triangular tube bundle array under both static and dynamic two-phase flow conditions. The static calibration of the sensor was able to reduce the uncertainty to ±3% while the sensor conditioning circuit was able to capture instantaneous void fraction signals with frequencies up to 2.5 kHz.


2011 ◽  
Vol 383-390 ◽  
pp. 4922-4927
Author(s):  
Peng Xia Xu ◽  
Yan Feng Geng

Wet gas flow is a typical two-phase flow with low liquid fractions. As differential pressure signal contains rich information of flow parameters in two-phase flow metering, a new method is proposed for wet gas flow metering based on differential pressure (DP) and blind source separation (BSS) techniques. DP signals are from a couple of slotted orifices and the BSS method is based on time-frequency analysis. A good relationship between the liquid flow rate and the characteristic quantity of the separated signal is established, and a differential pressure correlation for slotted orifice is applied to calculate the gas flow rate. The calculation results are good with 90% relative errors less than ±10%. The results also show that BSS is an effective method to extract liquid flow rate from DP signals of wet gas flow, and to analysis different interactions among the total DP readings.


2017 ◽  
Vol 27 (12) ◽  
pp. 2799-2815
Author(s):  
Ewa Kolczyk ◽  
Zdzisław Miczkowski ◽  
Józef Czernecki

Purpose The purpose of this study is application of a numerical simulation for determination of the influence of geometric parameters of a furnace and hydrodynamics of the gas introduced by a vertical submerged lance on the process of feed mixing and temperature distribution. Design/methodology/approach A numerical simulation with Phoenics software was applied for modeling of liquid phase movement and heat exchange between the gas supplied through a lance and the slag feed in a top submerged lance (TSL) furnace. The simulation of a two-phase flow of a slag–gas mixture based on the inter phase slip algorithm module was conducted. The influence of selected parameters, such as depth of lance submergence, gas flow rate and change of furnace geometry, on the phenomena of movement was studied. Findings Growth of dynamics of mixing with the depth of lance submergence and with increase of gas velocity in the lance was observed. Formation of a recirculation zone in the liquid slag was registered. Movement of the slag caused by the gas flow brought homogenization of the temperature field. Originality/value The study applied the simulation of a two-phase flow in the liquid slag–gas system in steady state, taking into account heat transfer between phases. It provides possibilities for optimization and selection of process parameters within the scope of the developed new technology using a TSL furnace.


2013 ◽  
Vol 712-715 ◽  
pp. 1253-1258
Author(s):  
Hai Feng Xue ◽  
Xiong Chen ◽  
Yong Ping Wang ◽  
Ya Zheng

The two-dimension axisymmetric and two-phase flow in a full-size solid rocket motor with submerged nozzle under high acceleration condition has been simulated with Euler-Lagrange model. Without acceleration and under high axial acceleration on particle trajectories, the influences of different particle diameters were analyzed. The difference between gas flow field and two-phase flow field is significant. The particle accumulation zone above the inner wall of chamber and nozzle is mainly concentrated in two regions. The axial acceleration will intensify the impaction to the end of the chamber. The accretion of the particle phase diameter will increase the inertia of the particle phase, which may cause the following property worse, and the particles can easily form a highly-concentrated aggregation flow.


Sign in / Sign up

Export Citation Format

Share Document