State-feedback Stabilization for Stochastic Time-Varying High-Order Nonlinear Systems

Author(s):  
Hui Wang ◽  
Wuquan Li ◽  
Ying Liu
2016 ◽  
Vol 39 (12) ◽  
pp. 1898-1905 ◽  
Author(s):  
Liang Liu ◽  
Yifan Zhang

Based on the homogeneous domination approach and stochastic nonlinear time-delay system stability criterion, this paper investigates the global state-feedback stabilization problem for a class of stochastic high-order upper-triangular nonlinear systems with input time-varying delay. By skilfully choosing an appropriate Lyapunov–Krasoviskii functional and successfully solving several troublesome obstacles in the design and analysis procedure, a delay-independent state-feedback controller is designed to render the closed-loop system globally asymptotically stable in probability. The simulation example is given to verify the effectiveness of the proposed design scheme.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Fangzheng Gao ◽  
Zheng Yuan ◽  
Fushun Yuan

This paper investigates the problem of state-feedback stabilization for a class of stochastic high-order nonlinear systems with time-varying delays. Under the weaker conditions on the power order and the nonlinear growth, by using the method of adding a power integrator, a state-feedback controller is successfully designed, and the global asymptotic stability in the probability of the resulting closed-loop system is proven with the help of an appropriate Lyapunov-Krasovskii functional. A simulation example is given to demonstrate the effectiveness of the proposed design procedure.


Sign in / Sign up

Export Citation Format

Share Document