Transactions of the Institute of Measurement and Control
Latest Publications





Published By Sage Publications

1477-0369, 0142-3312

Seyed Hossein Rouhani ◽  
Hamed Mojallali ◽  
Alfred Baghramian

Simultaneous investigation of demand response programs and false data injection cyber-attack are critical issues for the smart power system frequency regulation. To this purpose, in this paper, the output of the studied system is simultaneously divided into two subsystems: one part including false data injection cyder-attack and another part without cyder-attack. Then, false data injection cyber-attack and load disturbance are estimated by a non-linear sliding mode observer, simultaneously and separately. After that, demand response is incorporated in the uncertain power system to compensate the whole or a part of the load disturbance based on the available electrical power in the aggregators considering communication time delay. Finally, active disturbance rejection control is modified and introduced to remove the false data injection cyber-attack and control the uncompensated load disturbance. The salp swarm algorithm is used to design the parameters. The results of several simulation scenarios indicate the efficient performance of the proposed method.

Guiling Li ◽  
Chen Peng

This paper investigates the robust stabilization of the adaptive sliding mode control for a class of linear systems subjected to external disturbance via event-triggered communication (ETC) scheme. First, in order to reduce the bandwidth utilization, a discrete ETC scheme is proposed and the networked sliding mode function is derived using the ETC scheme. Based on the derived sliding mode function, a reduced-order networked sliding mode dynamics with communication delay is established. Second, by constructing a Lyapunov–Krasovskii functional (LKF), asymptotic stability and stabilization criteria of the reduced-order sliding mode dynamics are given in the form of linear matrix inequalities. According to the stabilization result, a novel event-triggered-based adaptive sliding mode controller is designed while guaranteeing the reachability of the sliding surface. Finally, simulation results illustrate the effectiveness and merit of the developed method.

Yongjian Sun ◽  
Bo Xu

In this paper, in order to solve the calculation problem of creep damage of steam turbine rotor, a real-time calculation method based on finite element model is proposed. The temperature field and stress field of the turbine rotor are calculated using finite element analysis software. The temperature data and stress data of the crucial positions are extracted. The data of temperature, pressure, rotational speed, and stress relating to creep damage calculation are normalized. A real-time creep stress calculation model is established by multiple regression method. After that, the relation between stress and damage function is analyzed and fitted, and creep damage is calculated in real-time. A creep damage real-time calculation system is constructed for practical turbine engineering. Finally, a numerical simulation experiment is designed and carried out to verify the effectiveness of this novel approach. Contributions of present work are that a practical solution for real-time creep damage prediction of steam turbine is supplied. It relates the real-time creep damage prediction to process parameters of steam turbine, and it bridges the gap between the theoretical research works and practical engineering.

Xuan Yang ◽  
Xiaoe Ruan ◽  
Yan Geng

This paper is concerned with an iterative learning fault-tolerant control strategy for discrete-time nonlinear systems where actuator faults arbitrarily occur. First, the stochastic faults occurring in multiplicative and additive manner are considered. Then, statistical behaviors of both faults-corrupted control signals from the actuator to the plant and faults-free ones from the iterative learning controller to the actuator are analyzed. Meanwhile, sufficient conditions of convergence for the proposed strategy are established by resorting to the time-weighted norm technique. Finally, two numerical examples are provided to illustrate the effectiveness and reliability of the proposed results. Both theoretical analysis and simulations indicate that the developed strategy is satisfactory in preserving decent tracking accuracy of the addressed systems subject to actuator faults.

Jia Song ◽  
Jiangcheng Su ◽  
Yunlong Hu ◽  
Mingfei Zhao ◽  
Ke Gao

This paper investigates the stability and performance of the linear active disturbance rejection control (LADRC)–based system with uncertainties and external disturbance via transfer functions and a frequency-domain view. The performance of LADRC is compared with the state-observer-based state feedback control (SOSFC) and state feedback control (SFC). First, the transfer functions and the error transfer functions for LADRC, SOSFC, and SFC are studied using the state-space method. It is proven that the LADRC-, SOSFC-, and SFC-based closed-loop systems have the same transfer function from the reference input to the output and achieve the same control effects for the nominal system. Then, it is proven for the first time that the LADRC has a better anti-interference ability than the SOSFC and SFC. Besides, the asymptotic stability condition of LADRC-based closed-loop system considering large parameter perturbations is given first. Moreover, the sensitivity analysis of the closed-loop system is carried out. The results show that the LADRC has stronger robustness under parameter perturbations. According to the results, we conclude that the LADRC is of great disturbance rejection ability and strong robustness.

Yiyun Wang ◽  
Hongbing Li

In lumbar puncture surgeries, force and position information throughout the insertion procedure is vital for needle tip localization, because it reflects different tissue properties. Especially in pediatric cases, the changes are always insignificant for surgeons to sense the crucial feeling of loss of resistance. In this study, a robot system is developed to tackle the major clinical difficulties. Four different control algorithms with intention recognition ability are applied on a novel lumbar puncture robot system for better human–robot cooperation. Specific penetration detection based on force and position derivatives captures the feeling of loss of resistance, which is deemed crucial for needle tip location. Kinematic and actuation modeling provides a clear description of the hardware setup. The control algorithm experiment compares the human–robot cooperation performance of proposed algorithms. The experiment also dictates the clear role of designed penetration detection criteria in capturing the penetration, improving the success rate, and ensuring operational safety.

Zhiwen Wang ◽  
Bin Zhang ◽  
Xiangnan Xu ◽  
Usman ◽  
Long Li

This paper investigates the security control problem of the cyber-physical system under false data injection attacks. A model predictive switching control strategy based on attack perception is proposed to compensate for the untrusted sequence of data caused by false data injection attacks. First, the binary attack detector is applied whether the system has suffered the attack. If the attack occurs, multistep correction is carried out for the future data according to the previous time data, and the waiting period [Formula: see text] is set. The input and output sequence of the controller is reconstructed, and the system is modeled as a constant time-delay switched system. Subsequently, the Lyapunov methods and average-dwell time are combined to provide sufficient conditions for the asymptotical stability of closed-loop switched system. Finally, the simulation of the networked first-order inverted pendulum model reveals that the control technique can efficiently suppress the influence of the attacks.

Liqiang Wang ◽  
Xianqing Wu ◽  
Meizhen Lei

The stabilization and disturbance rejection of the translational oscillator with a rotating actuator (TORA) are considered in this paper. To deal with the control issues, a novel continuous sliding mode control method is designed for the TORA system. Compared with existing sliding mode control methods for the TORA system, the proposed method here is continuous. Specifically, first, a global diffeomorphism is introduced for the model of the TORA system. Then, an elaborate sliding manifold is constructed, and a continuous sliding mode control scheme is developed to ensure the convergence of the sliding manifold. Furthermore, rigorous theoretical analysis is given. Finally, simulation tests are carried out, and the obtained simulation results demonstrate that the proposed method exhibits superior stabilization control performance and strong robustness.

Juan Zhou ◽  
HuiLing Lai ◽  
Bo Men

This paper considers the [Formula: see text] dissipative filtering problem for a class of Singular Markov jump systems (SMJSs) with distributed time delays and discrete time delays. First, using Lyapunov’s stability theory and combining delay partitioning technique, integral partitioning technique, and free weight matrix method, the sufficient conditions for stochastic admissibility and [Formula: see text] dissipation of system are studied. Then, a filtering design method based on linear matrix inequalities (LMIs) is given to make the filtering error system stochastically admissible and [Formula: see text] dissipative. Finally, numerical simulations verify the effectiveness of the resulting method.

Dazhou Geng ◽  
Qijuan Chen ◽  
Yang Zheng ◽  
Xuhui Yue ◽  
Donglin Yan

The stabilization of power take-off (PTO) is imperative especially under circumstances of fluctuating input wave energy. In this paper, a flow control valve is introduced to optimize the transient process of the hydraulic PTO, which can contribute to a quicker adjustment and a stronger stability. Under variations of input power and load torque in transient process, an open-loop control method and a closed-loop control method are proposed as the opening law of the above valve, and the hydraulic motor speed, the pressure at the accumulator inlet and the generated power are chosen as indicators to examine the regulation performance. Then, the synergic effect of the flow control valve and the accumulator in the transient process is discussed. The effectiveness of the two presented control methods on the fluctuation suppression is respectively tested and compared in both regular wave and irregular wave situations via simulation. To validate the practical effectiveness of the proposed methods, field experiments are conducted. The results demonstrate that the open-loop control can only improve the damping ability of the hydraulic PTO in the speed raising stage, while the closed-loop control can improve the stability both in the speed raising stage and in the load increasing stage.

Sign in / Sign up

Export Citation Format

Share Document