scholarly journals A fixed-delay broadcasting protocol for video-on-demand

Author(s):  
J.-F. Paris
1998 ◽  
Author(s):  
Jehan-Francois Paris ◽  
Steven W. Carter ◽  
Darrell D. E. Long

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Ying-Nan Chen ◽  
Li-Ming Tseng

Broadcasting Protocols can efficiently transmit videos that simultaneously shared by clients with partitioning the videos into segments. Many studies focus on decreasing clients' waiting time, such as the fixed-delay pagoda broadcasting (FDPB) and the harmonic broadcasting schemes. However, limited-capability client devices such as PDAs and set-top boxes (STBs) suffer from storing a significant fraction of each video while it is being watched. How to reduce clients' buffer demands is thus an important issue. Related works include the staircase broadcasting (SB), the reverse fast broadcasting (RFB), and the hybrid broadcasting (HyB) schemes. This work improves FDPB to save client buffering space as well as waiting time. In comparison with SB, RFB, and HyB, the improved FDPB scheme can yield the smallest waiting time under the same buffer requirements.


2009 ◽  
Vol 20 (01) ◽  
pp. 45-55
Author(s):  
REGANT Y. S. HUNG ◽  
H. F. TING

The advance of wireless and mobile technology introduces a new type of Video-on-Demand (VOD) systems, namely the mobile VOD systems, that provide VOD services to mobile clients. It is a challenge to design broadcasting protocols for such systems because of the following special requirements: (1) fixed maximum bandwidth requirement: the maximum bandwidth required for broadcasting a movie should be fixed and independent of the number of requests, (2) load adaptivity: the total bandwidth usage should be dependent on the number of requests; the fewer the requests the smaller the total bandwidth usage, and (3) clients sensitivity: the system should be able to support clients with a wide range of heterogeneous capabilities. In the literature, there are some partial solutions that give protocols meeting one or two of the above requirements. In this paper, we give the first protocol that meets all of the three requirements. The performance of our protocol is optimal up to a small constant factor.


Sign in / Sign up

Export Citation Format

Share Document