TI-QSSVM: Two Independent Quarter Sphere Support Vector Machine for binary classification

Author(s):  
Ramin Rezvani-KhorashadiZadeh ◽  
Ramin Sayah-Mofazalli ◽  
Mehdi Nejati
IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 86555-86569 ◽  
Author(s):  
Sugen Chen ◽  
Junfeng Cao ◽  
Zhong Huang ◽  
Chuansheng Shen

2019 ◽  
Vol 23 (21) ◽  
pp. 10649-10659 ◽  
Author(s):  
Xiaopeng Hua ◽  
Sen Xu ◽  
Jun Gao ◽  
Shifei Ding

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Fengnong Chen ◽  
Pulan Chen ◽  
Hamed Hamid Muhammed ◽  
Juan Zhang

The aim of the paper is to identify the breast malignant and benign lesions using the features of apparent diffusion coefficient (ADC), perfusion fraction f, pseudodiffusion coefficient D⁎, and true diffusion coefficient D from intravoxel incoherent motion (IVIM). There are 69 malignant cases (including 9 early malignant cases) and 35 benign breast cases who underwent diffusion-weighted MRI at 3.0 T with 8 b-values (0~1000 s/mm2). ADC and IVIM parameters were determined in lesions. The early malignant cases are used as advanced malignant and benign tumors, respectively, so as to assess the effectiveness on the result. A predictive model was constructed using Support Vector Machine Binary Classification (SVMBC, also known Support Vector Machine Discriminant Analysis (SVMDA)) and Partial Least Squares Discriminant Analysis (PLSDA) and compared the difference between them both. The D value and ADC provide accurate identification of malignant lesions with b=300, if early malignant tumor was considered as advanced malignant (cancer). The classification accuracy is 93.5% for cross-validation using SVMBC with ADC and tissue diffusivity only. The sensitivity and specificity are 100% and 87.0%, respectively, r2cv=0.8163, and root mean square error of cross-validation (RMSECV) is 0.043. ADC and IVIM provide quantitative measurement of tissue diffusivity for cellularity and are helpful with the method of SVMBC, getting comprehensive and complementary information for differentiation between benign and malignant breast lesions.


2012 ◽  
Vol 433-440 ◽  
pp. 2856-2861 ◽  
Author(s):  
Rui Zhang ◽  
Tong Bo Liu ◽  
Ming Wen Zheng

In this paper, we proposed a new fuzzy support vector machine(called L2–FSVM here), which error part of object is L2–norm.Meanwhile we introduce a new method of generating fuzzy memberships so as to reduce to effects of outliers. The experimental results demonstrate that the L2-FSVM method provides improved ability to reduce to effects of outliers in comparison with traditional SVMs and FSVMs, and claim that L2–FSVM is the best way to solve the binary classification in the three methods stated above.


Author(s):  
Thế Cường Nguyễn ◽  
Thanh Vi Nguyen

In binary classification problems, two classes of data seem to be different from each other. It is expected to bemore complicated due to the number of data points of clusters in each class also be different. Traditional algorithmsas Support Vector Machine (SVM), Twin Support Vector Machine (TSVM), or Least Square Twin Support VectorMachine (LSTSVM) cannot sufficiently exploit information about the number of data points in each cluster of the data.Which may be effect to the accuracy of classification problems. In this paper, we propose a new Improvement LeastSquare - Support Vector Machine (called ILS-SVM) for binary classification problems with a class-vs-clusters strategy.Experimental results show that the ILS-SVM training time is faster than that of TSVM, and the ILS-SVM accuracy isbetter than LSTSVM and TSVM in most cases.


Sign in / Sign up

Export Citation Format

Share Document