Road Traffic Condition Monitoring using Deep Learning

Author(s):  
S. SASI PRIYA ◽  
S. Rajarajeshwari ◽  
K. Sowmiya ◽  
P. Vinesha
2022 ◽  
Vol 6 (1) ◽  
pp. 1-25
Author(s):  
Fang-Chieh Chou ◽  
Alben Rome Bagabaldo ◽  
Alexandre M. Bayen

This study focuses on the comprehensive investigation of stop-and-go waves appearing in closed-circuit ring road traffic wherein we evaluate various longitudinal dynamical models for vehicles. It is known that the behavior of human-driven vehicles, with other traffic elements such as density held constant, could stimulate stop-and-go waves, which do not dissipate on the circuit ring road. Stop-and-go waves can be dissipated by adding automated vehicles (AVs) to the ring. Thorough investigations of the performance of AV longitudinal control algorithms were carried out in Flow, which is an integrated platform for reinforcement learning on traffic control. Ten AV algorithms presented in the literature are evaluated. For each AV algorithm, experiments are carried out by varying distributions and penetration rates of AVs. Two different distributions of AVs are studied. For the first distribution scenario, AVs are placed consecutively. Penetration rates are varied from 1 AV (5%) to all AVs (100%). For the second distribution scenario, AVs are placed with even distribution of human-driven vehicles in between any two AVs. In this scenario, penetration rates are varied from 2 AVs (10%) to 11 AVs (50%). Multiple runs (10 runs) are simulated to average out the randomness in the results. From more than 3,000 simulation experiments, we investigated how AV algorithms perform differently with varying distributions and penetration rates while all AV algorithms remained fixed under all distributions and penetration rates. Time to stabilize, maximum headway, vehicle miles traveled, and fuel economy are used to evaluate their performance. Using these metrics, we find that the traffic condition improvement is not necessarily dependent on the distribution for most of the AV controllers, particularly when no cooperation among AVs is considered. Traffic condition is generally improved with a higher AV penetration rate with only one of the AV algorithms showing a contrary trend. Among all AV algorithms in this study, the reinforcement learning controller shows the most consistent improvement under all distributions and penetration rates.


Sign in / Sign up

Export Citation Format

Share Document