infrared images
Recently Published Documents


TOTAL DOCUMENTS

1523
(FIVE YEARS 328)

H-INDEX

52
(FIVE YEARS 8)

2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Jun Shu ◽  
Juncheng He ◽  
Ling Li

Infrared image of power equipment is widely used in power equipment fault detection, and segmentation of infrared images is an important step in power equipment thermal fault detection. Nevertheless, since the overlap of the equipment, the complex background, and the low contrast of the infrared image, the current method still cannot complete the detection and segmentation of the power equipment well. To better segment the power equipment in the infrared image, in this paper, a multispectral instance segmentation (MSIS) based on SOLOv2 is designed, which is an end-to-end and single-stage network. First, we provide a novel structure of multispectral feature extraction, which can simultaneously obtain rich features in visible images and infrared images. Secondly, a module of feature fusion (MARFN) has been constructed to fully obtain fusion features. Finally, the combination of multispectral feature extraction, the module of feature fusion (MARFN), and instance segmentation (SOLOv2) realize multispectral instance segmentation of power equipment. The experimental results show that the proposed MSIS model has an excellent performance in the instance segmentation of power equipment. The MSIS based on ResNet-50 has 40.06% AP.


2021 ◽  
Vol 14 (1) ◽  
pp. 15
Author(s):  
Shengguo Ge ◽  
Siti Nurulain Mohd Rum

The human body generates infrared radiation through the thermal movement of molecules. Based on this phenomenon, infrared images of the human body are often used for monitoring and tracking. Among them, key point location on infrared images of the human body is an important technology in medical infrared image processing. However, the fuzzy edges, poor detail resolution, and uneven brightness distribution of the infrared image of the human body cause great difficulties in positioning. Therefore, how to improve the positioning accuracy of key points in human infrared images has become the main research direction. In this study, a multi-scale convolution fusion deep residual network (Mscf-ResNet) model is proposed for human body infrared image positioning. This model is based on the traditional ResNet, changing the single-scale convolution to multi-scale and fusing the information of different receptive fields, so that the extracted features are more abundant and the degradation problem, caused by the excessively deep network, is avoided. The experiments show that our proposed method has higher key point positioning accuracy than other methods. At the same time, because the network structure of this paper is too deep, there are too many parameters and a large volume of calculations. Therefore, a more lightweight network model is the direction of future research.


Author(s):  
S. I. Rudikov ◽  
V. Yu. Tsviatkou ◽  
A. P. Shkadarevich

The problem of reducing the dynamic range and improving the quality of infrared (IR) images with a wide dynamic range for their display on a liquid crystal matrix with 8-bit pixels is considered. To solve this problem in optoelectronic devices in real time, block algorithms based on local equalization of the histogram are widely used, taking into account their relatively low computational complexity and the possibility of taking into account local features of the brightness distribution. The basic adaptive histogram equalization algorithm provides reasonably high image quality after conversion, but may result in excessive contrast for some types of images. In a modified algorithm of adaptive histogram equalization, the contrast is limited by a threshold by truncating local maxima at the edges of the histogram. This leads, however, to a deterioration in other indicators of image quality. This disadvantage is inherent in many algorithms of local histogram equalization, along with limited control over the characteristics of image reproduction quality. To improve the quality and expand the control interval for the characteristics of the reproduction of infrared images, the article proposes an algorithm for double reduction of the dynamic range of the image with intermediate control of the shape of its histogram. This algorithm performs: preliminary reduction of the dynamic range of the image based on adaptive equalization of the histogram, control of the shape of the histogram based on its linear or nonlinear compression, linear stretching of its central part and linear stretching (compression) of its lateral parts, final reduction of the dynamic range based on linear compression of the entire histograms. The characteristics of the proposed algorithm are compared with the characteristics of known algorithms for reducing the dynamic range and improving the image quality. The dependences of the characteristics of the quality of image reproduction after a decrease in their dynamic range on the control parameters of the proposed algorithm and recommendations for their choice taking into account the computational complexity are given.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 31
Author(s):  
Ziheng Feng ◽  
Li Song ◽  
Jianzhao Duan ◽  
Li He ◽  
Yanyan Zhang ◽  
...  

Powdery mildew severely affects wheat growth and yield; therefore, its effective monitoring is essential for the prevention and control of the disease and global food security. In the present study, a spectroradiometer and thermal infrared cameras were used to obtain hyperspectral signature and thermal infrared images data, and thermal infrared temperature parameters (TP) and texture features (TF) were extracted from the thermal infrared images and RGB images of wheat with powdery mildew, during the wheat flowering and filling periods. Based on the ten vegetation indices from the hyperspectral data (VI), TF and TP were integrated, and partial least square regression, random forest regression (RFR), and support vector machine regression (SVR) algorithms were used to construct a prediction model for a wheat powdery mildew disease index. According to the results, the prediction accuracy of RFR was higher than in other models, under both single data source modeling and multi-source data modeling; among the three data sources, VI was the most suitable for powdery mildew monitoring, followed by TP, and finally TF. The RFR model had stable performance in multi-source data fusion modeling (VI&TP&TF), and had the optimal estimation performance with 0.872 and 0.862 of R2 for calibration and validation, respectively. The application of multi-source data collaborative modeling could improve the accuracy of remote sensing monitoring of wheat powdery mildew, and facilitate the achievement of high-precision remote sensing monitoring of crop disease status.


Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3107
Author(s):  
Kefeng Fan ◽  
Kai Hong ◽  
Fei Li

Deep convolutional neural networks are capable of achieving remarkable performance in single-image super-resolution (SISR). However, due to the weak availability of infrared images, heavy network architectures for insufficient infrared images are confronted by excessive parameters and computational complexity. To address these issues, we propose a lightweight progressive compact distillation network (PCDN) with a transfer learning strategy to achieve infrared image super-resolution reconstruction with a few samples. We design a progressive feature residual distillation (PFDB) block to efficiently refine hierarchical features, and parallel dilation convolutions are utilized to expand PFDB’s receptive field, thereby maximizing the characterization power of marginal features and minimizing the network parameters. Moreover, the bil-global connection mechanism and the difference calculation algorithm between two adjacent PFDBs are proposed to accelerate the network convergence and extract the high-frequency information, respectively. Furthermore, we introduce transfer learning to fine-tune network weights with few-shot infrared images to obtain infrared image mapping information. Experimental results suggest the effectiveness and superiority of the proposed framework with low computational load in infrared image super-resolution. Notably, our PCDN outperforms existing methods on two public datasets for both ×2 and ×4 with parameters less than 240 k, proving its efficient and excellent reconstruction performance.


Sign in / Sign up

Export Citation Format

Share Document