simulation experiments
Recently Published Documents





Yaesr Khamayseh ◽  
Rabiah Al-qudah

<p>Wireless networks are designed to provide the enabling infrastructure for emerging technological advancements. The main characteristics of wireless networks are: Mobility, power constraints, high packet loss, and lower bandwidth. Nodes’ mobility is a crucial consideration for wireless networks, as nodes are moving all the time, and this may result in loss of connectivity in the network. The goal of this work is to explore the effect of replacing the generally held assumption of symmetric radii for wireless networks with asymmetric radii. This replacement may have a direct impact on the connectivity, throughput, and collision avoidance mechanism of mobile networks. The proposed replacement may also impact other mobile protocol’s functionality. In this work, we are mainly concerned with building and maintaining fully connected wireless network with the asymmetric assumption. For this extent, we propose to study the effect of the asymmetric links assumption on the network performance using extensive simulation experiments. Extensive simulation experiments were performed to measure the impact of these parameters. Finally, a resource allocation scheme for wireless networks is proposed for the dual rate scenario. The performance of the proposed framework is evaluated using simulation.</p>

2022 ◽  
Vol 6 (1) ◽  
pp. 1-25
Fang-Chieh Chou ◽  
Alben Rome Bagabaldo ◽  
Alexandre M. Bayen

This study focuses on the comprehensive investigation of stop-and-go waves appearing in closed-circuit ring road traffic wherein we evaluate various longitudinal dynamical models for vehicles. It is known that the behavior of human-driven vehicles, with other traffic elements such as density held constant, could stimulate stop-and-go waves, which do not dissipate on the circuit ring road. Stop-and-go waves can be dissipated by adding automated vehicles (AVs) to the ring. Thorough investigations of the performance of AV longitudinal control algorithms were carried out in Flow, which is an integrated platform for reinforcement learning on traffic control. Ten AV algorithms presented in the literature are evaluated. For each AV algorithm, experiments are carried out by varying distributions and penetration rates of AVs. Two different distributions of AVs are studied. For the first distribution scenario, AVs are placed consecutively. Penetration rates are varied from 1 AV (5%) to all AVs (100%). For the second distribution scenario, AVs are placed with even distribution of human-driven vehicles in between any two AVs. In this scenario, penetration rates are varied from 2 AVs (10%) to 11 AVs (50%). Multiple runs (10 runs) are simulated to average out the randomness in the results. From more than 3,000 simulation experiments, we investigated how AV algorithms perform differently with varying distributions and penetration rates while all AV algorithms remained fixed under all distributions and penetration rates. Time to stabilize, maximum headway, vehicle miles traveled, and fuel economy are used to evaluate their performance. Using these metrics, we find that the traffic condition improvement is not necessarily dependent on the distribution for most of the AV controllers, particularly when no cooperation among AVs is considered. Traffic condition is generally improved with a higher AV penetration rate with only one of the AV algorithms showing a contrary trend. Among all AV algorithms in this study, the reinforcement learning controller shows the most consistent improvement under all distributions and penetration rates.

2022 ◽  
Vol 14 (2) ◽  
pp. 884
Jicang Xu ◽  
Linlin Li ◽  
Ming Ren

The evaluation of government data sustainability is a multicriteria decision making problem. The analytic network process (ANP) is among the most popular methods in determining the weights of criteria, and its limitation is the un-convergence problem. This paper proposes a hybrid ANP (H-ANP) method, which aims to improve the ANP by combining the weights obtained from the analytic hierarchy process (AHP). The proposed method is proved to be convergent since the network of the H-ANP is strongly connected. According to the simulation experiments, H-ANP is more robust than ANP under different settings of parameters. It also shows a higher Kendall cor-relationship and lower MSE with respect to AHP, compared with the existing method (e.g., the averagely connected ANP method). An empirical example is also provided, which uses H-ANP to evaluate the government data sustainability of a city.

Frédéric Fabry

Abstract In the ensemble Kalman filter (EnKF), the covariance localization radius is usually small when assimilating radar observations because of high density of the radar observations. This makes the region away from precipitation difficult to correct if no other observations are available, as there is no reason to correct the background. To correct errors away from the innovating radar observations, a multiscale localization (MLoc) method adapted to dense observations like those from radar is proposed. In this method, different scales are corrected successively by using the same reflectivity observations, but with different degree of smoothing and localization radius at each step. In the context of observing system simulation experiments, single and multiple assimilation experiments are conducted with the MLoc method. Results show that the MLoc assimilation updates areas that are away from the innovative observations and improves on average the analysis and forecast quality in single cycle and cycling assimilation experiments. The forecast gains are maintained until the end of the forecast period, illustrating the benefits of correcting different scales.

2022 ◽  
Vol 12 (2) ◽  
pp. 723
Ye Dai ◽  
Chao-Fang Xiang ◽  
Zhao-Xu Liu ◽  
Zhao-Long Li ◽  
Wen-Yin Qu ◽  

The modular robot is becoming a prevalent research object in robots because of its unique configuration advantages and performance characteristics. It is possible to form robot configurations with different functions by reconfiguring functional modules. This paper focuses on studying the modular robot’s configuration design and self-reconfiguration process and hopes to realize the industrial application of the modular self-reconfiguration robot to a certain extent. We design robotic configurations with different DOF based on the cellular module of the hexahedron and perform the kinematic analysis of the structure. An innovative design of a modular reconfiguration platform for conformational reorganization is presented, and the collaborative path planning between different modules in the reconfiguration platform is investigated. We propose an optimized ant colony algorithm for reconfiguration path planning and verify the superiority and rationality of this algorithm compared with the traditional ant colony algorithm for platform path planning through simulation experiments.

2022 ◽  
Vol 9 ◽  
Daqian Wang ◽  
Xin Wang ◽  
Peifeng Pan ◽  
Jun Gao

Polarimetric imaging has been studied and applied to the problem of visibility restoration in various scenarios such as haze, mist and underwater. Although studies have shown that under certain conditions, circular polarimetric imaging has certain advantages over linear polarimetric imaging, however, for a complex environment containing both scattering medium and object, the performance of linear and circular polarimetric imaging is affected by many factors. In this paper, the propagation of linear and circular polarized light in the scattering medium is theoretically analyzed, then the simulation experiments under different experimental conditions are carried out and the conclusions are summarized. In order to validate the simulation results, the measurement experiments are carried out in dynamic smoke scenarios with different smoke concentrations. The results show that, the propagation of the polarized light, especially the circular polarized light, is determined by medium conditions. Generally, both the linear and circular polarimetric imaging had an ability to reduce the image degradation caused by smoke, however, under some certain environment conditions, unlike the linear polarized channels, the difference between the orthogonal circular polarized channels may be approached or even reversed, which may limit the circular polarization-based difference imaging and visibility restoration performance.

2022 ◽  
Vol 2022 ◽  
pp. 1-11
Yidong Cheng ◽  
Yi Wang

The film space is the image of social life represented on the screen, which determines that the form of the film and television picture is a plane model, and it can only use a two-dimensional plane space to express an objective scene with a three-dimensional space. In order to improve the effects of special effects processing in movies, this paper applies computer imaging technology to the processing of movie characteristics. When performing specific scene simulations, the specific structure of each computer imaging particle system is derived on the basis of the general structure of the computer imaging particle system. In addition, this paper combines the improved algorithm to carry out several case analyses, and the reliability of this method is verified through simulation experiments, which promotes the application and promotion of computer imaging technology in movie special effects processing.

Abstract Forecast observing system simulation experiments (OSSEs) are conducted to assess the potential impact of geostationary microwave (GeoMW) sounder observations on numerical weather prediction forecasts. A regional OSSE is conducted using a tropical cyclone (TC) case that is very similar to hurricane Harvey (2017), as hurricanes are among the most devastating of weather-related natural disasters, and hurricane intensity continues to pose a significant challenge for numerical weather prediction. A global OSSE is conducted to assess the potential impact of a single GeoMW sounder centered over the continental United States versus two sounders positioned at the current locations of the National Oceanic and Atmospheric Administration Geostationary Operational Environmental Satellites (GOES) East and West. It is found that assimilation of GeoMW soundings result in better characterization of the TC environment, especially before and during intensification, which leads to significant improvements in forecasts of TC track and intensity. TC vertical structure (warm core thermal perturbation and horizontal wind distribution) is also substantially improved, as are the surface wind and precipitation extremes. In the global OSSE, assimilation of GeoMW soundings leads to slight improvement globally and significant improvement regionally, with regional impact equal to or greater than nearly all other observation types.

2022 ◽  
Vol 2022 ◽  
pp. 1-12
Xuezhong Fu

In order to improve the effect of financial data classification and extract effective information from financial data, this paper improves the data mining algorithm, uses linear combination of principal components to represent missing variables, and performs dimensionality reduction processing on multidimensional data. In order to achieve the standardization of sample data, this paper standardizes the data and combines statistical methods to build an intelligent financial data processing model. In addition, starting from the actual situation, this paper proposes the artificial intelligence classification and statistical methods of financial data in smart cities and designs data simulation experiments to conduct experimental analysis on the methods proposed in this paper. From the experimental results, the artificial intelligence classification and statistical method of financial data in smart cities proposed in this paper can play an important role in the statistical analysis of financial data.

2022 ◽  
Vol 24 (1) ◽  
pp. 139-140
Dr.S. Dhanabal ◽  
Dr.K. Baskar ◽  
R. Premkumar ◽  

Collaborative filtering algorithms (CF) and mass diffusion (MD) algorithms have been successfully applied to recommender systems for years and can solve the problem of information overload. However, both algorithms suffer from data sparsity, and both tend to recommend popular products, which have poor diversity and are not suitable for real life. In this paper, we propose a user internal similarity-based recommendation algorithm (UISRC). UISRC first calculates the item-item similarity matrix and calculates the average similarity between items purchased by each user as the user’s internal similarity. The internal similarity of users is combined to modify the recommendation score to make score predictions and suggestions. Simulation experiments on RYM and Last.FM datasets, the results show that UISRC can obtain better recommendation accuracy and a variety of recommendations than traditional CF and MD algorithms.

Sign in / Sign up

Export Citation Format

Share Document