On the explanation of spatial smoothing in MUSIC algorithm for coherent sources

Author(s):  
Qing Chen ◽  
Ruolun Liu
2014 ◽  
Vol 530-531 ◽  
pp. 530-533
Author(s):  
Jin Fang Cheng ◽  
Chao Ran Zhang ◽  
Wei Zhang

The MUSIC algorithm cannot deal with the problem of DOA estimation of coherent sources, this paper proposes the USTC (unitary spatio-temporal correlation matrices)-MUSIC algorithm using single vector hydrophone to solve this problem, by utilizing the unitary spatio-temporal correlation matrix instead of the covariance matrix. The simulation results demonstrate that the USTC-MUSIC algorithm has a better ability to distinguish the coherent sources from different directions than the spatial smoothing MUSIC algorithm.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Wu Wei ◽  
Xu Le ◽  
Zhang Xiaofei ◽  
Li Jianfeng

In this paper, the topic of coherent two-dimensional direction of arrival (2D-DOA) estimation is investigated. Our study jointly utilizes the compressed sensing (CS) technique and the parallel profiles with linear dependencies (PARALIND) model and presents a 2D-DOA estimation algorithm for coherent sources with the uniform rectangular array. Compared to the traditional PARALIND decomposition, the proposed algorithm owns lower computational complexity and smaller data storage capacity due to the process of compression. Besides, the proposed algorithm can obtain autopaired azimuth angles and elevation angles and can achieve the same estimation performance as the traditional PARALIND, which outperforms some familiar algorithms presented for coherent sources such as the forward backward spatial smoothing-estimating signal parameters via rotational invariance techniques (FBSS-ESPRIT) and forward backward spatial smoothing-propagator method (FBSS-PM). Extensive simulations are provided to validate the effectiveness of the proposed CS-PARALIND algorithm.


Sign in / Sign up

Export Citation Format

Share Document