spatial smoothing
Recently Published Documents


TOTAL DOCUMENTS

318
(FIVE YEARS 59)

H-INDEX

34
(FIVE YEARS 3)

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Hongyong Wang ◽  
Weibo Deng ◽  
Ying Suo ◽  
Xin Zhang ◽  
Yanmo Hu ◽  
...  

In array, mutual coupling between the antennas is inevitable, which has an adverse effect on the estimation of parameters. To reduce the mutual coupling between the antennas of distributed nested arrays, this paper proposes a new array called the distributed super nested arrays, which have the good characteristics of the distributed nested arrays and can reduce the mutual coupling between the antennas. Then, an improved multiscale estimating signal parameter via rotational invariance techniques (ESPRIT) algorithm is presented for the distributed super nested arrays to improve the accuracy of direction-of-arrival (DOA) estimation. Next, we analyze the limitations of the spatial smoothing algorithm used by the distributed super nested arrays when there are multiple-source signals and the influence of the baseline length of distributed super nested arrays on the accuracy of DOA estimation. The simulation results show that the distributed super nested arrays can effectively reduce the mutual coupling between the array antennas, improve the DOA estimation performance, and significantly increase the number of detectable source signals.


2021 ◽  
Vol 11 (22) ◽  
pp. 10827
Author(s):  
Ming Peng ◽  
Dengyi Wang ◽  
Liu Liu ◽  
Chengcheng Liu ◽  
Zhenming Shi ◽  
...  

Erecting underground structures in regions with unidentified weak layers, cavities, and faults is highly dangerous and potentially disastrous. An efficient and accurate near-surface exploration method is thus of great significance for guiding construction. In near-surface detection, imaging methods suffer from artifacts that the complex structure caused and a lack of efficiency. In order to realize a rapid, accurate, robust near-surface seismic imaging, a minimum variance spatial smoothing (MVSS) beamforming method is proposed for the seismic detection and imaging of underground geological structures under a homogeneous assumption. Algorithms such as minimum variance (MV) and spatial smoothing (SS), the coherence factor (CF) matrix, and the diagonal loading (DL) methods were used to improve imaging quality. Furthermore, it was found that a signal advance correction helped improve the focusing effect in near-surface situations. The feasibility and imaging quality of MVSS beamforming are verified in cave models, layer models, and cave-layer models by numerical simulations, confirming that the MVSS beamforming method can be adapted for seismic imaging. The performance of MVSS beamforming is evaluated in the comparison with Kirchhoff migration, the DAS beamforming method, and reverse time migration. MVSS beamforming has a high computational efficiency and a higher imaging resolution. MVSS beamforming also significantly suppresses the unnecessary components in seismic signals such as S-waves, surface waves, and white noise. Moreover, compared with basic delay and sum (DAS) beamforming, MVSS beamforming has a higher vertical resolution and adaptively suppresses interferences. The results show that the MVSS beamforming imaging method might be helpful for detecting near-surface underground structures and for guiding engineering construction.


2021 ◽  
pp. 108406
Author(s):  
Fangqing Wen ◽  
Junpeng Shi ◽  
Zijing Zhang
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document