Insulator infrared image denoising using Gaussian Mixture Model with adaptive component selection

Author(s):  
Zhongwei Sun ◽  
Qingrui Guo ◽  
Xinyuan Ge
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Hui Wei ◽  
Wei Zheng

An image denoising method is proposed based on the improved Gaussian mixture model to reduce the noises and enhance the image quality. Unlike the traditional image denoising methods, the proposed method models the pixel information in the neighborhood around each pixel in the image. The Gaussian mixture model is employed to measure the similarity between pixels by calculating the L2 norm between the Gaussian mixture models corresponding to the two pixels. The Gaussian mixture model can model the statistical information such as the mean and variance of the pixel information in the image area. The L2 norm between the two Gaussian mixture models represents the difference in the local grayscale intensity and the richness of the details of the pixel information around the two pixels. In this sense, the L2 norm between Gaussian mixture models can more accurately measure the similarity between pixels. The experimental results show that the proposed method can improve the denoising performance of the images while retaining the detailed information of the image.


2006 ◽  
Vol 18 (6) ◽  
pp. 738-743 ◽  
Author(s):  
Makito Seki ◽  
◽  
Haruhisa Okuda ◽  
Manabu Hashimoto ◽  
Nami Hirata

In this paper, we propose a new object modeling method for infrared (IR) image. It is based on the modeling method using Gaussian Mixture Model (GMM) that has been originally proposed for general visible image. The original method is one of effective object modeling algorithms that can describe the topological structures of the internal patterns of object. This approach can also eliminate the influences due to small differences between patterns. On the other hand, an IR image is often used instead of visible image in actual applications such as outdoor surveillance. IR images make it easy to extract foreground object regions from background scenes, but their low-contrast makes object modeling difficult. We therefore propose a modeling method using Orientation-Code for IR image. Orientation-Code of each pixel has information about the maximum-gradient orientation of image, not intensity information. Gradient orientation information does not depend on contrast and describes internal pattern structures of objects even in unclear IR images. We also applied proposed method to vehicle detection for outdoor scenes, where it extracts multiple foreground regions as vehicle candidates using background subtraction for IR image, and they are described as models by our method. Models are finally compared with standard vehicle view models pre-memorized to determine which candidate is true vehicle or not. Evaluation tests with actual IR video sequences have proved that our proposed algorithm detects objects robustly.


2018 ◽  
Vol 11 (4) ◽  
pp. 2568-2609 ◽  
Author(s):  
Charles-Alban Deledalle ◽  
Shibin Parameswaran ◽  
Truong Q. Nguyen

Sign in / Sign up

Export Citation Format

Share Document