image denoising
Recently Published Documents


TOTAL DOCUMENTS

4529
(FIVE YEARS 1152)

H-INDEX

75
(FIVE YEARS 15)

2022 ◽  
Vol 40 ◽  
pp. 1-12
Author(s):  
Hicham Rezgui ◽  
Messaoud Maouni ◽  
Mohammed Lakhdar Hadji ◽  
Ghassen Touil

In this paper, we present three strong edge stopping functions for image enhancement. These edge stopping functions have the advantage of effectively removing the image noise while preserving the true edges and other important features. The obtained results show an improved quality for the restored images compared to existing restoration models.


2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
Shaobin Ma ◽  
Lan Li ◽  
Chengwen Zhang

Effective noise removal has become a hot topic in image denoising research while preserving important details of an image. An adaptive threshold image denoising algorithm based on fitting diffusion is proposed. Firstly, the diffusion coefficient in the diffusion equation is improved, and the fitting diffusion coefficient is established to overcome the defects of texture detail loss and edge degradation caused by excessive diffusion intensity. Then, the threshold function is adaptively designed and improved so that it can automatically control the threshold of the function according to the maximum gray value of the image and the number of iterations, so as to further preserve the important details of the image such as edge and texture. A neural network is used to realize image denoising because of its good learning ability of image statistical characteristics, mainly by the diffusion equation and deep learning (CNN) algorithm as the foundation, focus on the effects of activation function of network optimization, using multiple feature extraction technology in-depth networks to study the characteristics of the input image richer, and how to better use the adaptive algorithm on the depth of diffusion equation and optimization backpropagation learning. The training speed of the model is accelerated and the convergence of the algorithm is improved. Combined with batch standardization and residual learning technology, the image denoising network model based on deep residual learning of the convolutional network is designed with better denoising performance. Finally, the algorithm is compared with other excellent denoising algorithms. From the comparison results, it can be seen that the improved denoising algorithm in this paper can also improve the detail restoration of denoised images without losing the sharpness. Moreover, it has better PSNR than other excellent denoising algorithms at different noise standard deviations. The PSNR of the new algorithm is greatly improved compared with the classical algorithm, which can effectively suppress the noise and protect the image edge and detail information.


2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Dianhai Wang ◽  
Lianmei Shen

Current image recognition methods cannot combine the transmission of image data with the interaction of image features, so the steps of image recognition are too independent, and the traditional methods take longer time and cannot complete the image denoising. Therefore, a recognition method of sports training action image based on software defined network (SDN) architecture is proposed. The SDN architecture is used to integrate the image data transmission and interactive process and to optimize the image processing centralization. The network architecture is composed of application layer, control layer, and infrastructure layer. Based on this, the dimension of image sample set is reduced, and the edge detection operator in any direction is constructed. The image edge filter is realized by calculating the response and threshold of image edge by using lag threshold and nonmaximum suppression (NMS). The Hough transform algorithm is improved to optimize the detection range. Extracting the neighborhood feature of sports training action, the recognition of sports training action image based on SDN architecture is completed. Simulation results show that the proposed method takes less time and the image denoising effect is better. In addition, the F1 test results of the proposed method are higher than those of the literature, and the convergence is better. Therefore, the performance of the proposed method is better.


2022 ◽  
Vol 17 ◽  
pp. 16-24
Author(s):  
Lalit Mohan Satapathy ◽  
Pranati Das

In the world of digital image processing, image denoising plays a vital role, where the primary objective was to distinguish between a clean and a noisy image. However, it was not a simple task. As a consequence of everyone's understanding of the practical challenge, a variety of methods have been presented during the last few years. Of those, wavelet transformer-based approaches were the most common. But wavelet-based methods have their own limitations in image processing applications like shift sensitivity, poor directionality, and lack of phase information, and they also face difficulties in defining the threshold parameters. As a result, this study provides an image de-noising approach based on Bi-dimensional Empirical Mode Decomposition (BEMD). This project's main purpose is to disintegrate noisy images based on their frequency and construct a hybrid algorithm that uses existing de-noising techniques. This approach decomposes the noisy picture into numerous IMFs with residue, which were subsequently filtered independently based on their specific properties. To quantify the success of the proposed technique, a comprehensive analysis of the experimental results of the benchmark test images was conducted using several performance measurement matrices. The reconstructed image was found to be more accurate and pleasant to the eye, outperforming state-of-the-art denoising approaches in terms of PSNR, MSE, and SSIM.


Sign in / Sign up

Export Citation Format

Share Document