Advances in frequency comb synthesis-based Nyquist pulse-train carver and applications in optical systems

Author(s):  
Camille-Sophie Bres ◽  
Mohammad Amin Shoaie ◽  
Steevy Cordette ◽  
Armand Vedadi
Author(s):  
Gregory Moille ◽  
Qing Li ◽  
Lu Xiyuan ◽  
Kartik Srinivasan

The Lugiato-Lefever Equation (LLE), first developed to provide a description of spatial dissipative structures in optical systems, has recently made a significant impact in the integrated photonics community, where it has been adopted to help understand and predict Kerr-mediated nonlinear optical phenomena such as parametric frequency comb generation inside microresonators. The LLE is essentially an application of the nonlinear Schrodinger equation (NLSE) to a damped, driven Kerr nonlinear resonator, so that a periodic boundary condition is applied. Importantly, a slow-varying time envelope is stipulated, resulting in a mean-field solution in which the field does not vary within a round trip. This constraint, which differentiates the LLE from the more general Ikeda map, significantly simplifies calculations while still providing excellent physical representation for a wide variety of systems. In particular, simulations based on the LLE formalism have enabled modeling that quantitatively agrees with reported experimental results on microcomb generation (e.g., in terms of spectral bandwidth), and have also been central to theoretical studies that have provided better insight into novel nonlinear dynamics that can be supported by Kerr nonlinear microresonators. The great potential of microresonator frequency combs (microcombs) in a wide variety of applications suggests the need for efficient and widely accessible computational tools to more rapidly further their development. Although LLE simulations are commonly performed by research groups working in the field, to our knowledge no free software package for solving this equation in an easy and fast way is currently available. Here, we introduce pyLLE, an open-source LLE solver for microcomb modeling. It combines the user-friendliness of the Python programming language and the computational power of the Julia programming language.


2012 ◽  
Vol 20 (2) ◽  
pp. 1129 ◽  
Author(s):  
Masataka Nakazawa ◽  
Toshihiko Hirooka ◽  
Peng Ruan ◽  
Pengyu Guan
Keyword(s):  

2021 ◽  
Author(s):  
David Moss

Microcombs provide a potential compact and efficient light source for multi-Terabit-per-second optical superchannels. However, as the bandwidth of these multi-wavelength light sources is increased, this can result in low per-line power. Optical amplifiers can be used to overcome power limitations, but the accompanying spontaneous optical noise can degrade performance in optical systems. To overcome this issue, we propose wideband noise reduction for comb lines using a high-Q microring resonator, whose resonances align with comb lines. When applying the proposed distillation to a superchannel system with 18 Gbaud, 64-QAM sub-channels in a > 10 Tb/s optical superchannel, we find that noise-corrupted comb lines can reduce the optical signal-to-noise ratio required for the comb by ~ 9 dB when used as optical carriers at the transmitter side, and by ~ 12 dB when used as a local oscillator at the receiver side.


2015 ◽  
Vol 349 ◽  
pp. 60-64 ◽  
Author(s):  
Yuan Fang ◽  
Jianjun Yu ◽  
Junwen Zhang ◽  
Xinying Li ◽  
Nan Chi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document