refractive index
Recently Published Documents


TOTAL DOCUMENTS

23789
(FIVE YEARS 3842)

H-INDEX

157
(FIVE YEARS 21)

2022 ◽  
Vol 149 ◽  
pp. 106831
Author(s):  
Xinhao Wang ◽  
Yingchun Wu ◽  
Qimeng Lv ◽  
Xuecheng Wu

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 599
Author(s):  
Zuzana Šaršounová ◽  
Vít Plaček ◽  
Václav Prajzler ◽  
Kateřina Masopustová ◽  
Petr Havránek

Fibre optic cables are widely used as communication cables in Instrumentation and Control (I&C) systems. In the case of nuclear power plants (NPPs), using optic cables in mild environments outside of containment areas are very common. However, at present, there is a need for fibre optic cables to be used in containment areas, i.e., with radiation. An optical fibre consists of a highly transparent core that possesses a higher refractive index than the surrounding transparent cladding, which possesses a lower refractive index. Most optical fibres are manufactured from glass (silica with required dopants) which is created at high temperatures from the reaction between gasses. The glass used in optical fibres is sensitive; it becomes dark during exposure to radiation, which compromises the optic functions. That is why there has been a slow infiltration of optic cable in NPP containment areas. Radiation resistant optic fibres have been developed. Although these fibres are called “radiation resistant,” they go through a darkening process (absorbance increase) as well, but not as quickly. Immediately after the irradiation has stopped, a recovery process starts in the glass structure. During this period, optical losses of the glass improve, but not to the original level as before the irradiation. During the testing of optic cables for the installation in nuclear power plant containment areas, we observed an unusual recovery process. In the beginning, a healing effect was observed. However, after a few days of recovery, the healing process stopped, and the trend changed again as a worsening of the optical properties was observed. This paper describes experiments which explain the reasons for such an unexpected behaviour.


Photonics ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 45
Author(s):  
Lina Suo ◽  
Haimiao Zhou ◽  
Ya-Pei Peng ◽  
Fan Yang ◽  
Hsiang-Chen Chui ◽  
...  

We demonstrate high sensitivity fiber refractive index (RI) sensor based on asymmetric supermode interferences in tapered four core fiber (TFCF). To make TFCF-based RI sensors, the whitelight was launched into any one of the cores to define the excitation orientation and is called a vertex-core excitation scheme. When the four-core fiber (FCF) was gradually tapered, the four cores gathered closer and closer. Originally, the power coupling occurred between its two neighboring cores first and these three cores are grouped to produce supermodes. Subsequently, the fourth diagonal core enters the evanescent field overlapping region to excite asymmetric supermodes interferences. The output spectral responses of the two cores next to the excitation core are mutually in phase whereas the spectral responses of the diagonal core are in phase and out of phase to that of the excitation core at the shorter and longer wavelengths, respectively. Due to the lowest limitation of the available refractive index of liquids, the best sensitivity can be achieved when the tapered diameter is 10 μm and the best RI sensitivity S is 3249 nm/RIU over the indices ranging from 1.41–1.42. This is several times higher than that at other RI ranges due to the asymmetric supermodes.


Sign in / Sign up

Export Citation Format

Share Document