Multiplex Graph Clustering with Network Embedding Technique: Review, Methods and Challenges

Author(s):  
Beibei Han ◽  
Yingmei Wei ◽  
Xianghan Wang ◽  
Qingyong Wang
Author(s):  
Sambaran Bandyopadhyay ◽  
N. Lokesh ◽  
M. N. Murty

Attributed network embedding has received much interest from the research community as most of the networks come with some content in each node, which is also known as node attributes. Existing attributed network approaches work well when the network is consistent in structure and attributes, and nodes behave as expected. But real world networks often have anomalous nodes. Typically these outliers, being relatively unexplainable, affect the embeddings of other nodes in the network. Thus all the downstream network mining tasks fail miserably in the presence of such outliers. Hence an integrated approach to detect anomalies and reduce their overall effect on the network embedding is required.Towards this end, we propose an unsupervised outlier aware network embedding algorithm (ONE) for attributed networks, which minimizes the effect of the outlier nodes, and hence generates robust network embeddings. We align and jointly optimize the loss functions coming from structure and attributes of the network. To the best of our knowledge, this is the first generic network embedding approach which incorporates the effect of outliers for an attributed network without any supervision. We experimented on publicly available real networks and manually planted different types of outliers to check the performance of the proposed algorithm. Results demonstrate the superiority of our approach to detect the network outliers compared to the state-of-the-art approaches. We also consider different downstream machine learning applications on networks to show the efficiency of ONE as a generic network embedding technique. The source code is made available at https://github.com/sambaranban/ONE.


Author(s):  
D. C. Brindley ◽  
M. McGill

Morphological and cytochemical studies of platelets have reported a surface coat, or glycocalyx, external to the plasma membrane (1). Biochemical analyses have likewise confirmed the highly adsorptive properties of platelets as transporters of coagulation factors (2). However, visualization of the platelet membrane by conventional EM procedures does not reflect this special relationship between the platelet and its plasma environment. By the routine method of alcohol-propylene oxide dehydration for Epon embedding, the lipid bilayer nature of the platelet membrane appears similar to other blood cells (Fig. 1). A new rapid embedding technique using dimethoxypropane (DMP) as dehydrating agent (13) has permitted ultrastructural analyses of the surface features of the platelet-plasma interface.Aliquots of human or rabbit platelet-rich plasma (PRP) were added to equal volumes of 6% glutaraldehyde in Millonig's buffer at 37° for 45 minutes, rinsed in buffer and postfixed in 1% osmium in Millonig's buffer for 45 minutes.


Author(s):  
Jeffrey P. Chang ◽  
Jaang J. Wang

Flat embeddment of certain specimens for electron microscopy is necessary for three classes of biological materials: namely monolayer cells, tissue sections of paraffin or plastics, as well as cell concentrations, exfoliated cells, and cell smears. The present report concerns a flat-embedding technique which can be applied to all these three classes of materials and which is a modified and improved version of Chang's original methodology.Preparation of coverglasses and microslides. Chemically cleaned coverglasses, 11 × 22 mm or other sizes, are laid in rows on black paper. Ink-mark one coner for identifying the spray-side of the glass for growing cells. Lightly spray with Teflon monomer (Heddy/Contact Inductries, Paterson, NO 07524, U.S.A.) from a pressurized can. Bake the sprayed glasses at 500°F for 45 min on Cover-Glass Ceramic Racks (A. Thomas Co. Philadelphia), for Teflon to polymerize.Monolayer Cells. After sterilization, the Teflon-treated coverglasses, with cells attached, are treated or fixed in situ in Columbia staining dishes (A. Thomas Co., Philadelphia) for subsequent processing.


Author(s):  
Jaang J. Wang ◽  
Cheng C. Chen ◽  
Men F. Shaio ◽  
Chia T. Liu ◽  
Chung S. Lee ◽  
...  

The involvement of nucleus in the maturation processes of Dengue-2 virus in a mosquito cell line, C6/36 cells, has been identified by the electron microscopy and immunocytochemistry. The C6/36 cells were obtained from ATCC and maintained in MEM culture medium containing 10% fetal bovine serum at 28°C. The cell suspensions or cells grown on teflon-coated coverslips were infected with Dengue-2 virus (107/ml) for various time periods of 2 hours, 3, 6, 8, and 10 days. The cells were then fixed in buffered 1.5% glutaraldehyde, and washed in acetone before immunolabeled with monoclonal antibody. An indirect immunocytochemical labeling method of avidin-biotin complex (ABC) conjugated with peroxidase or gold particles (20 nm in diameter) and a flat embedding technique were used to localize the virus particles.At early stages of infections (before 3 days), there were no virion particles detected. After 6 days and on of infections, cytopathic effect (CPE) was observed and showed positive immuno-peroxidase reactions under the light and electron microscopies.


Sign in / Sign up

Export Citation Format

Share Document