cell concentrations
Recently Published Documents


TOTAL DOCUMENTS

193
(FIVE YEARS 33)

H-INDEX

30
(FIVE YEARS 4)

Marine Drugs ◽  
2021 ◽  
Vol 20 (1) ◽  
pp. 24
Author(s):  
Despoina Varamogianni-Mamatsi ◽  
Thekla I. Anastasiou ◽  
Emmanouela Vernadou ◽  
Nikos Papandroulakis ◽  
Nicolas Kalogerakis ◽  
...  

Chronic discharge of surplus organic matter is a typical side effect of fish aquaculture, occasionally leading to coastal eutrophication and excessive phytoplankton growth. Owing to their innate filter-feeding capacity, marine sponges could mitigate environmental impact under integrated multitrophic aquaculture (IMTA) scenarios. Herein, we investigated the clearance capacity of four ubiquitous Mediterranean sponges (Agelas oroides, Axinella cannabina, Chondrosia reniformis and Sarcotragus foetidus) against three microalgal substrates with different size/motility characteristics: the nanophytoplankton Nannochloropsis sp. (~3.2 μm, nonmotile) and Isochrysis sp. (~3.8 μm, motile), as well as the diatom Phaeodactylum tricornutum (~21.7 μm, nonmotile). In vitro cleaning experiments were conducted using sponge explants in 1 L of natural seawater and applying different microalgal cell concentrations under light/dark conditions. The investigated sponges exhibited a wide range of retention efficiencies for the different phytoplankton cells, with the lowest average values found for A. cannabina (37%) and the highest for A. oroides (70%). The latter could filter up to 14.1 mL seawater per hour and gram of sponge wet weight, by retaining 100% of Isochrysis at a density of 105 cells mL−1, under darkness. Our results highlight differences in filtering capacity among sponge species and preferences for microalgal substrates with distinct size and motility traits.


Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1408
Author(s):  
Christina Kryou ◽  
Ioannis Theodorakos ◽  
Panagiotis Karakaidos ◽  
Apostolos Klinakis ◽  
Antonios Hatziapostolou ◽  
...  

Bioprinting offers great potential for the fabrication of three-dimensional living tissues by the precise layer-by-layer printing of biological materials, including living cells and cell-laden hydrogels. The laser-induced forward transfer (LIFT) of cell-laden bioinks is one of the most promising laser-printing technologies enabling biofabrication. However, for it to be a viable bioprinting technology, bioink printability must be carefully examined. In this study, we used a time-resolved imaging system to study the cell-laden bioink droplet formation process in terms of the droplet size, velocity, and traveling distance. For this purpose, the bioinks were prepared using breast cancer cells with different cell concentrations to evaluate the effect of the cell concentration on the droplet formation process and the survival of the cells after printing. These bioinks were compared with cell-free bioinks under the same printing conditions to understand the effect of the particle physical properties on the droplet formation procedure. The morphology of the printed droplets indicated that it is possible to print uniform droplets for a wide range of cell concentrations. Overall, it is concluded that the laser fluence and the distance of the donor–receiver substrates play an important role in the printing impingement type; consequently, a careful adjustment of these parameters can lead to high-quality printing.


Author(s):  
J Baruch ◽  
N Cernicchiaro ◽  
C A Cull ◽  
K F Lechtenberg ◽  
J S Nickell ◽  
...  

Abstract Blood leukocyte differentials can be useful for understanding changes associated with bovine respiratory disease (BRD) progression. By improving turnaround time, point-of-care leukocyte differential assays (PCLD) may provide logistical advantages to laboratory-based assays. Our objective was to assess BRD progression in steers challenged with bovine herpesvirus 1 and Mannheimia haemolytica using point-of-care and laboratory-based blood leukocyte differentials. Thirty Holstein steers (average body weight of 211 kg + 2.4 kg) were inoculated intranasally on day 0 with bovine herpesvirus 1 and intrabronchially on day 6 with Mannheimia haemolytica. Blood leukocytes differentials were measured using both assays from study day 0 to 13. Linear mixed models were fitted to evaluate the associations between: 1) the type of assay (laboratory-based or PCLD) with respect to leukocyte, lymphocyte, and neutrophil concentrations, 2) study day with cell concentrations, and 3) cell concentrations with lung consolidation measured at necropsy. Point-of-care leukocyte, lymphocyte, and neutrophil concentrations were significantly associated (P < 0.05) with the respective cell concentrations obtained from the laboratory-based leukocyte differential. Cell concentrations reported by both assays differed significantly (P < 0.05) over time, indicating shifts from healthy to viral and bacterial disease states. Lymphocyte concentrations, lymphocyte / neutrophil ratios obtained from both assays, and band neutrophil concentrations from the laboratory-based assay were significantly associated (P < 0.05) with lung consolidation, enhancing assessments of disease severity. The PCLD may be a useful alternative to assess BRD progression when laboratory-based leukocyte differentials are impractical.


2021 ◽  
Vol 18 (183) ◽  
Author(s):  
Hiroki Kitamura ◽  
Toshihiro Omori ◽  
Takuji Ishikawa

Bacterial biofilms, which can be found wherever there is water and a substrate, can cause chronic infections and clogging of industrial flow systems. Despite intensive investigation of the dynamics and rheological properties of biofilms, the impact of their rheological properties on streamer growth remains unknown. We numerically simulated biofilm growth in a pillar-flow and investigated the effects of rheological properties of a filamentous flow-shaped biofilm, called a ‘streamer’, on its formation by varying the viscoelasticity. The flow-field is assumed to be a Stokes flow and is solved by a boundary element method. A Maxwell model is used for extracellular matrix-mediated streamer growth to express the fluidity of streamer formations. Both high elastic modulus and viscosity are needed for streamer formation, and high viscosity promotes streamer growth at low cell concentrations. Our findings are consistent with experimental observations and can explain the relationship between the cell concentrations and viscosity at which streamers form.


2021 ◽  
pp. 104063872110475
Author(s):  
K. Gary Magdesian ◽  
Samantha Barnum ◽  
Nicola Pusterla

Clostridium perfringens and Clostridioides difficile cause significant morbidity and mortality in foals. Antemortem diagnosis of C. perfringens infection has been complicated by a paucity of tests available for toxin detection. Fecal PCR panels have assays for a variety of C. perfringens toxin gene sequences as well as for several other foal gastrointestinal pathogens. We evaluated results of a comprehensive fecal diarrhea PCR panel in 28 foals that had been presented to a referral hospital because of diarrhea. Sixteen (57%) foals were positive for C. perfringens and/or C. difficile toxin gene sequences on fecal PCR, including 3 foals positive for NetF toxin. These foals were younger ( p = 0.0029) and had higher hematocrits ( p = 0.0087), hemoglobin ( p = 0.0067), and red blood cell concentrations ( p = 0.028) than foals with diarrhea that tested negative for clostridial toxins. The foals had lower total protein concentrations ( p = 0.045) and were more likely to have band neutrophils on a CBC ( p = 0.013; OR: 16.2). All 3 foals with NetF toxin gene sequences detected in feces survived to discharge, indicating that diarrhea caused by NetF toxigenic C. perfringens isolates is not uniformly fatal.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254967
Author(s):  
Susanna A. Wood ◽  
Jonathan Puddick ◽  
Ian Hawes ◽  
Konstanze Steiner ◽  
Daniel R. Dietrich ◽  
...  

Microcystis is a bloom-forming genus of cyanobacteria with some genotypes that produce highly toxic microcystin hepatotoxins. In waterbodies where biological and physical factors are relatively homogenous, toxin quotas (the average amount of toxin per cell), at a single point in time, are expected to be relatively constant. In this study we challenged this assumption by investigating the spatial distribution of microcystin quotas at a single point in time on two separate occasions in a lake with a major Microcystis bloom. Microcystis cell concentrations varied widely across the lake on both sampling occasions (730- and 137-fold) together with microcystin quotas (148- and 362-fold). Cell concentrations and microcystin quotas were strongly positively correlated (R2 = 0.89, P < 0.001, n = 28; R2 = 0.67, P < 0.001, n = 25). Analysis of Microcystis strains using high-throughput sequencing of the 16S-23S rRNA intergenic spacer region showed no relationship between microcystin quota and the relative abundance of specific sequences. Collectively, the results of this study indicate an association between microcystin production and cell density that magnifies the potential for bloom toxicity at elevated cell concentrations.


Author(s):  
Brennan Parmelee Streck ◽  
Georges Naufal ◽  
George Carrum ◽  
LaQuisa Hill ◽  
Helen E. Heslop ◽  
...  

BIOspektrum ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 14-17
Author(s):  
Seigo Shima ◽  
Rudolf K. Thauer

AbstractMethanothermobacter is a thermophilic genus within the kingdom of Euryarchaeota. Chemolithoautotrophic growth on H2 and CO2 at 65 °C is rapid and to high cell concentrations. Champions in this respect are the species M. thermautotrophicus and M. marburgensis, which were used to elucidate the unique biochemistry of methane formation from H2 and CO2. These two species are presently also being explored as biocatalysts in the industrial conversion of electrolytically produced H2 to “green” methane.


Sign in / Sign up

Export Citation Format

Share Document