Calculating worst-case execution times of transactions in databases for event-driven, hard real-time embedded systems

Author(s):  
A. Munnich ◽  
G. Farber
Author(s):  
Jia Xu

In hard real-time and embedded multiprocessor system real-world applications, it is very important to strive to minimize the run-time overhead of the scheduler as much as possible, especially in hard real-time and embedded multiprocessor systems with limited processor and system resources. In this paper, we present a method that reduces the worst-case time complexity of the run-time scheduler for re-computing latest start times and for selecting processes for execution on a multiprocessor at run-time to O(n), where n is the number of processes.


2014 ◽  
Vol 651-653 ◽  
pp. 624-629
Author(s):  
Liang Liang Kong ◽  
Lin Xiang Shi ◽  
Lin Chen

Most embedded systems are real-time systems, so real-time is an important performance metric for embedded systems. The worst-case execution time (WCET) estimation for embedded programs could satisfy the requirement of hard real-time evaluation, so it is widely used in embedded systems evaluation. Based on sufficient survey on the progress of WCET estimation around the world, it proposes a new classification of WCET estimation. After introducing the principle of WCET estimation, it mainly demonstrates various types of technologies to estimate WCET and classifies them into two main streams, namely, static and dynamic WCET estimations. Finally, it shows the development of WCET analysis tools.


2018 ◽  
Vol 7 (3.3) ◽  
pp. 252
Author(s):  
Mood Venkanna ◽  
Rameshwar Rao ◽  
P Chandra Sekhar

Industrial requires hard real-time systems for safety and critical applications like automotive, Aeronautics, manufacturing control and train industries. Hard Real-Time Systems’ embedded controllers are with expectation of complete the tasks within a certain time bounds reliably including task scheduling. The estimation of upper bound limits corresponding to the execution times is often termed as the Worst-Case Execution Times (WCETs). It is an essential step in developing and validating the hard real-time systems. Particularly, the upper bounds need to satisfy these constraints related to the execution times. However, it is often not feasible many times to set upper bounds on execution times for programs. In present work, the problem of choosing reconfigurable Custom Instructions (CIs) is accomplished by optimizing the WCET corresponding to an application. This issue is designed using Particle Swarm Optimization (PSO) based program for a path analysis. The work emphasizes on the effectiveness of optimizing the WCET when applied to a reconfigurable processor. It evaluates a compound application of multimedia with a host of reconfigurable CIs corresponding to a number of hardware parameters.  


2015 ◽  
Vol 12 (1) ◽  
pp. 56-64 ◽  
Author(s):  
André de Matos Pedro ◽  
David Pereira ◽  
Luís Miguel Pinho ◽  
Jorge Sousa Pinto

2008 ◽  
Vol 2008 ◽  
pp. 1-16 ◽  
Author(s):  
Emiliano Betti ◽  
Daniel Pierre Bovet ◽  
Marco Cesati ◽  
Roberto Gioiosa

Sign in / Sign up

Export Citation Format

Share Document