Filtering of ECG signals corrupted with power line interference

Author(s):  
E. Shwedyk ◽  
B.G. Celler
2020 ◽  
Vol 24 (4) ◽  
pp. 381-392
Author(s):  
Ivan Dotsinsky ◽  
◽  
Todor Stoyanov ◽  
Georgy Mihov ◽  
◽  
...  

The acquired ECG signals are often contaminated by residual Power-line Interference (PLI). A lot of methods, algorithms and techniques for PLI reduction have been published over the last few decades. The so called subtraction procedure is known to eliminate almost totally the interference without affecting the signal spectrum. The goal of our research was to develop a heuristic version of the procedure intended for ECG signals with high Sampling Rate (SR) up to 128 kHz. The PLI is extracted from the corrupted signal by technique similar to second order band-pass filter but with practically zero phase error. The sample number as well as the left and right parts outside the samples belonging to a current sine wave, which is extracted from the contaminated signal, are counted and measured. They are used to compensate the error arising with the shift between the moving averaged free of PLI signal samples and their real position along the linear segments (usually PQ and TP intervals having frequency band near to zero). The here calculated PLI components are appropriately interpolated to ‘clean’ the dynamically changed in amplitude and position contaminated samples within the non-linear segments (QRS complexes and high T waves). The reported version of the subtraction procedure is tested with 5 and 128 kHz sampled ECG signals. The maximum absolute error is about 20 μV except for the ends of the recordings. Finally, an approach to PLI elimination from paced ECG signals is proposed. It includes pace pulse extraction, signal re-sampling down to 4 kHz and subtraction procedure implementation followed by adding back the removed pace pulses.


2021 ◽  
Vol 18 (3) ◽  
pp. 291-302
Author(s):  
George Karraz

Power line interference is the main noise source that contaminates Electrocardiogram (ECG) signals and measurements. In recent years, adaptive filters with different approaches have been investigated to eliminate power line interference in ECG waveforms. Adaptive line enhancement filter is a special type of adaptive filter that, unlike other adaptive filters, does not require a reference signal and has potential application in ECG signal filtering. In this paper, a selflearning filter based on an adaptive line enhancement (ALE) filter is proposed to remove power line interference in ECG signals. We simulate the adaptive filter in MATLwith a noisy ECG signal and analyze the performance of algorithms in terms of signal-to-noise ratio (SNR) improvement. The proposed algorithm is validated with Physikalisch-Technische Bundesanstalt (PTB) ECG signals database. Additive white gaussian noise is added to the raw ECG signal. Influential parameters on the ALE filter performance such as filter delay, the convergence factor, and the filter length are analyzed and discussed.


Sign in / Sign up

Export Citation Format

Share Document