band pass
Recently Published Documents


TOTAL DOCUMENTS

3481
(FIVE YEARS 638)

H-INDEX

56
(FIVE YEARS 8)

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 552
Author(s):  
Juan Andrés Vásquez-Peralvo ◽  
Adrián Tamayo-Domínguez ◽  
Gerardo Pérez-Palomino ◽  
José Manuel Fernández-González ◽  
Thomas Wong

The use of additive manufacturing and different metallization techniques for prototyping radio frequency components such as antennas and waveguides are rising owing to their high precision and low costs. Over time, additive manufacturing has improved so that its utilization is accepted in satellite payloads and military applications. However, there is no record of the frequency response in the millimeter-wave band for inductive 3D frequency selective structures implemented by different metallization techniques. For this reason, three different prototypes of dielectric 3D frequency selective structures working in the millimeter-wave band are designed, simulated, and manufactured using VAT photopolymerization. These prototypes are subsequently metallized using metallic paint atomization and electroplating. The manufactured prototypes have been carefully selected, considering their design complexity, starting with the simplest, the square aperture, the medium complexity, the woodpile structure, and the most complex, the torus structure. Then, each structure is measured before and after the metallization process using a measurement bench. The metallization used for the measurement is nickel spray flowed by the copper electroplating. For the electroplating, a detailed table showing the total area to be metallized and the current applied is also provided. Finally, the effectiveness of both metallization techniques is compared with the simulations performed using CST Microwave Studio. Results indicate that a shifted and reduced band-pass is obtained in some structures. On the other hand, for very complex structures, as in the torus case, band-pass with lower loss is obtained using copper electroplating, thus allowing the manufacturing of inductive 3D frequency selective structures in the millimeter-wave band at a low cost.


Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 89
Author(s):  
Bowen Zhang ◽  
Nuo Chen ◽  
Xinda Lu ◽  
Yuhang Hu ◽  
Zihao Yang ◽  
...  

A chip-scale tunable optical filter is indispensable to meeting the demand for reconfigurability in wavelength division multiplexing systems, channel routing, and switching, etc. Here, we propose a new scheme of bandwidth tunable band-pass filters based on a parity-time (PT) symmetric coupled microresonator system. Large bandwidth tunability is realized on the basis of the tuning of the relative resonant frequency between coupled rings and by making use of the concept of the exception point (EP) in the PT symmetric systems. Theoretical investigations show that the bandwidth tuning range depends on the intrinsic loss of the microresonators, as well as on the loss contrast between the two cavities. Our proof-of-concept device confirms the tunability and shows a bandwidth tuning range from 21 GHz to 49 GHz, with an extinction ratio larger than 15 dB. The discrepancy between theory and experiment is due to the non-optimized design of the coupling coefficients, as well as to fabrication errors. Our design based on PT symmetry shows a distinct route towards the realization of tunable band-pass filters, providing new ways to explore non-Hermitian light manipulation in conventional integrated devices.


Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 102
Author(s):  
Noy Citron ◽  
Eldad Holdengreber ◽  
Oz Sorkin ◽  
Shmuel E. Schacham ◽  
Eliyahu Farber

A high-performance S-band down-conversion microstrip mixer, for operation from 77 K to 300 K, is described. The balanced mixer combines a 90 degree hybrid coupler, two Schottky diodes, a band pass filter, and a low pass filter. The coupler phase shift drastically improves noise rejection. The circuit was implemented according to the configuration obtained from extensive simulation results based on electromagnetic analysis. The experimental results agreed well with the simulation results, showing a maximum measured insertion loss of 0.4 dB at 2 GHz. The microstrip mixer can be easily adjusted to different frequency ranges, up to about 50 GHz, through the proper choice of microstrip configuration. This novel S-band cryogenic mixer, implemented without resorting to special components, shows a very high performance at liquid nitrogen temperatures, making this mixer very suitable for high-temperature superconductive applications, such as front-ends.


Author(s):  
I.B. Shirokov ◽  
◽  
P.A. Evdokimov ◽  
E.I. Shirokova ◽  
◽  
...  

This work is part of a project to create a device for monitoring changes in the composition of the air environment. The article describes the main elements of the repeater unit included in the measuring device. The results of modeling the developed band-pass filter, which is part of the waveguide path of the repeater, are presented. Experimental studies of the filter and circulator parameters are also carried out. The technical capabilities of the electronic part of the repeater unit, namely microwave amplifiers and a controlled phase shifter, are described.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8506
Author(s):  
Aiswarya S ◽  
Sreedevi K. Menon ◽  
Massimo Donelli ◽  
Meenu L

In this work, a compact dielectric sensor for the detection of adulteration in solid and liquid samples using planar resonators is presented. Six types of filter prototypes operating at 2.4 GHz are presented, optimized, numerically assessed, fabricated and experimentally validated. The obtained experimental results provided an error less than 6% with respect to the simulated results. Moreover, a size reduction of about 69% was achieved for the band stop filter and a 75% reduction for band pass filter compared to standard sensors realized using open/short circuited stub microstrip lines. From the designed filters, the miniaturised filter with Q of 95 at 2.4 GHz and size of 35 mm × 35 mm is formulated as a sensor and is validated theoretically and experimentally. The designed sensor shows better sensitivity, and it depends upon the dielectric property of the sample to be tested. Simulation and experimental validation of the designed sensor is carried out by loading different samples onto the sensor. The adulteration detection of various food samples using the designed sensor is experimentally validated and shows excellent sensing on adding adulterants to the original sample. The sensitivity of the sensor is analyzed by studying the variations in resonant frequency, scattering parameters, phase and Q factor with variation in the dielectric property of the sample loaded onto the sensor.


2021 ◽  
Author(s):  
Xuewei Ju ◽  
Guofeng Zhu ◽  
feng huang ◽  
Zhenrong Dai ◽  
Yanqing Chen ◽  
...  
Keyword(s):  

Author(s):  
K. Mathur ◽  
P. Venkateswaran ◽  
R. Nandi

A new linear voltage-controlled oscillator (LVCO) implementation using single AD-844 CFA with a pair of AD-835 multiplier devices and a pair of grounded capacitors is proposed. The open-loop transfer function of the topology is analyzed wherein the concept of Short-Circuit Natural Frequency (SCNF) is applied to derive the sinusoid oscillator implementation. The proposed oscillator circuit is then restructured to yield a linear voltage-controlled quadrature oscillator (LVCQO) after appropriate cascade with a CFA-based active integrator. The oscillation frequency is linearly tunable ([Formula: see text][Formula: see text]MHz) by the multiplier control voltage ([Formula: see text]. Subsequently, a high-[Formula: see text] selective band-pass (BP) filter is derived. Effects of the CFA port roll-off parameters and its parasitic capacitors ([Formula: see text] had been analyzed to be negligible. Measured oscillator response exhibited a THD [Formula: see text]%, a linearity error ([Formula: see text]% and a phase noise figure of ([Formula: see text]104 dBc/Hz at 24-kHz offset.


Sign in / Sign up

Export Citation Format

Share Document