Mean Best Basis Algorithm for Wavelet Speech Parameterization

Author(s):  
Jakub Galka ◽  
Mariusz Ziolko
Keyword(s):  
Author(s):  
Ling Gao ◽  
Shouxin Ren

This paper presented a novel method named wavelet packet transform-based partial least squares method (WPTPLS) for simultaneous spectrophotometric determination ofα-naphthylamine, p-nitroaniline, and benzidine. Wavelet packet representations of signals provided a local time-frequency description and separation ability between information and noise. The quality of the noise removal can be improved by using best-basis algorithm and thresholding operation. Partial least squares (PLS) method uses both the response and concentration information to enhance its ability of prediction. In this case, by optimization, wavelet function and decomposition level for WPTPLS method were selected as Db16 and 3, respectively. The relative standard errors of prediction (RSEP) for all components with WPTPLS and PLS were 2.23% and 2.71%, respectively. Experimental results showed WPTPLS method to be successful and better than PLS.


Author(s):  
Zhong Zhang ◽  
Jin Ohtaki ◽  
Hiroshi Toda ◽  
Takashi Imamura ◽  
Tetsuo Miyake

In this study, in order to verify the effectiveness of the variable filter band discrete wavelet transform (VFB-DWT) and construction method of the variable-band filter (VBF), a fetal ECG extraction has been carried out and the main results obtained are as follows. The approach to configuration VBF by selecting the frequency band only where the fetal ECG component is present was effective to configure the optimal base sensible signal. The extraction of the fetal ECG was successful by applying the wavelet shrinkage to VFB-DWT, which used the constructed VBF. The information entropy was selected as an evaluation index, and two kinds of ECG signals are used to evaluate the wavelet transform basis between the wavelet packet transform (WPT) and the VFB-DWT. One is a synthesized signal composed of white noise, the maternal ECG and the fetal ECG. The other signal is the real target signal separated by independent component analysis (ICA) and has the mother's body noise, the maternal ECG and the fetal ECG. The result shows that the basis by VBF of the VFB-DWT is better than the basis of the WPT that was chosen by the best basis algorithm (BBA).


2021 ◽  
Author(s):  
Aroutchelvame Mayilavelane

The hardware acceleration of the wavelet transform for real-time systems has become an essential research field. In the first part of the thesis, an efficient architecture that performs both forward and inverse lifting-based discrete wavelet transform is proposed. The proposed architecture reduces the hardware requirement by exploiting the redundancy in the arithmetic operation involved in DWT computation. The proposed architecture consists of predict module, update module, address generation module, control unit and a set of registers to establish data communication between predict and update modules. The symmetrical extension of images at the boundary to reduce distorted images has been incorporated in our proposed for both (5,3) wavelet and (9,7) wavelet. Best-basis algorithm that is designed for signal compression and de-noising uses WPT to select the best-basis node for a given additive cost function. In the second part of the thesis, we propose wavelet architecture to perform WPT decomposition. A new algorithm to implement the natural logarithm function using Maclaurin series is proposed to implement the cost function used for best-basis algorithm. These architectures have been described in VHDL at the RTL level and simulated successfully using ModelSim simulation environment. These architectures are implemented in Virex ll Pro FPGA series of Xilinx.


2021 ◽  
Author(s):  
Aroutchelvame Mayilavelane

The hardware acceleration of the wavelet transform for real-time systems has become an essential research field. In the first part of the thesis, an efficient architecture that performs both forward and inverse lifting-based discrete wavelet transform is proposed. The proposed architecture reduces the hardware requirement by exploiting the redundancy in the arithmetic operation involved in DWT computation. The proposed architecture consists of predict module, update module, address generation module, control unit and a set of registers to establish data communication between predict and update modules. The symmetrical extension of images at the boundary to reduce distorted images has been incorporated in our proposed for both (5,3) wavelet and (9,7) wavelet. Best-basis algorithm that is designed for signal compression and de-noising uses WPT to select the best-basis node for a given additive cost function. In the second part of the thesis, we propose wavelet architecture to perform WPT decomposition. A new algorithm to implement the natural logarithm function using Maclaurin series is proposed to implement the cost function used for best-basis algorithm. These architectures have been described in VHDL at the RTL level and simulated successfully using ModelSim simulation environment. These architectures are implemented in Virex ll Pro FPGA series of Xilinx.


Sign in / Sign up

Export Citation Format

Share Document