wavelet transform
Recently Published Documents


TOTAL DOCUMENTS

18290
(FIVE YEARS 3223)

H-INDEX

128
(FIVE YEARS 20)

Author(s):  
Sameh El-Sharo ◽  
Amani Al-Ghraibah ◽  
Jamal Al-Nabulsi ◽  
Mustafa Muhammad Matalgah

<p>The use of pulse wave analysis may assist cardiologists in diagnosing patients with vascular diseases. However, it is not common in clinical practice to interpret and analyze pulse wave data and utilize them to detect the abnormalities of the signal. This paper presents a novel approach to the clinical application of pulse waveform analysis using the wavelet technique by decomposing the normal and pathology signal into many levels. The discrete wavelet transform (DWT) decomposes the carotid arterial pulse wave (CAPW) signal, and the continuous wavelet transform (CWT) creates images of the decomposed signal. The wavelet analysis technique in this work aims to strengthen the medical benefits of the pulse wave. The obtained results show a clear difference between the signal and the images of the arterial pathologies in comparison with normal ones. The certain distinct that were achieved are promising but further improvement may be required in the future.</p>


Author(s):  
Atallah Mahmoud Al-Shatnawi ◽  
Faisal Al-Saqqar ◽  
Alireza Souri

This paper is aimed at improving the performance of the word recognition system (WRS) of handwritten Arabic text by extracting features in the frequency domain using the Stationary Wavelet Transform (SWT) method using machine learning, which is a wavelet transform approach created to compensate for the absence of translation invariance in the  Discrete Wavelets Transform (DWT) method. The proposed SWT-WRS of Arabic handwritten text consists of three main processes: word normalization, feature extraction based on SWT, and recognition. The proposed SWT-WRS based on the SWT method is evaluated on the IFN/ENIT database applying the Gaussian, linear, and polynomial support vector machine, the k-nearest neighbors, and ANN classifiers. ANN performance was assessed by applying the Bayesian Regularization (BR) and Levenberg-Marquardt (LM) training methods. Numerous wavelet transform (WT) families are applied, and the results prove that level 19 of the Daubechies family is the best WT family for the proposed SWT-WRS. The results also confirm the effectiveness of the proposed SWT-WRS in improving the performance of handwritten Arabic word recognition using machine learning. Therefore, the suggested SWT-WRS overcomes the lack of translation invariance in the DWT method by eliminating the up-and-down samplers from the proposed machine learning method.


2022 ◽  
Vol 24 (2) ◽  
pp. 0-0

Over recent times, medical imaging plays a significant role in clinical practices. Storing and transferring the huge volume of images becomes complicated without an efficient image compression technique. This paper proposes a compression algorithm that uses a Haar based wavelet transform called Tetrolet transform, which reduces the noise on the input images and decomposes with a 4 x 4 blocks of equal squares called tetrominoes. It opts for a decomposing using optimal scheme for achieving the input image into a sparse representation which gives a much-detailed performance for texture and edge information better than wavelet transform. Set Partitioning in Hierarchical Trees (SPIHT) is used for encoding the significant coefficients to achieve efficient image compression. It has been investigated with various metaheuristic algorithms. Experimental results prove that the proposed method outperforms the other transform-based compression in terms of PSNR, CR, and Complexity. Also, the proposed method shows an improved result with another state of work.


2022 ◽  
Vol 24 (2) ◽  
pp. 1-14
Author(s):  
Saravanan S. ◽  
Sujitha Juliet

Over recent times, medical imaging plays a significant role in clinical practices. Storing and transferring the huge volume of images becomes complicated without an efficient image compression technique. This paper proposes a compression algorithm that uses a Haar based wavelet transform called Tetrolet transform, which reduces the noise on the input images and decomposes with a 4 x 4 blocks of equal squares called tetrominoes. It opts for a decomposing using optimal scheme for achieving the input image into a sparse representation which gives a much-detailed performance for texture and edge information better than wavelet transform. Set Partitioning in Hierarchical Trees (SPIHT) is used for encoding the significant coefficients to achieve efficient image compression. It has been investigated with various metaheuristic algorithms. Experimental results prove that the proposed method outperforms the other transform-based compression in terms of PSNR, CR, and Complexity. Also, the proposed method shows an improved result with another state of work.


Author(s):  
Alper Yılmaz ◽  
Ahmet Küçüker ◽  
Gökay Bayrak ◽  
Davut Ertekin ◽  
Miadreza Shafie-Khah ◽  
...  

2022 ◽  
Vol 12 (1) ◽  
pp. 1-33
Author(s):  
D. Chavan ◽  
T.G. Sitharam ◽  
P. Anbazhagan

Propagation of the earthquake motion towards the ground surface alters both the acceleration and frequency content of the motion. Acceleration time record and Fourier amplitude spectrum of the motion reveal changes in the acceleration and frequency content. However, Fourier amplitude spectrum fails to give frequency-time variation. Wavelet transform overcomes this difficulty. In the present study, site response analysis of a liquefiable soil domain has been investigated employing wavelet transform. Three earthquake motions with distinct predominant frequencies are considered. It is revealed that the moment soil undergoes initial liquefaction, it causes a spike in the acceleration time history. Frequency of the spikes is found to be greater than the predominant frequency of the acceleration-time history recorded at the ground surface from the analysis. Interestingly, the spikes belong to the sharp tips of the shear stress-shear strain curve. Immediately after the spike, acceleration deamplification is observed. Post-liquefaction deamplification (filtering) of the frequency components is also observed.


Sign in / Sign up

Export Citation Format

Share Document