Load capacity of a neural network model with spatially and temporally structured connectivity

Author(s):  
K. Aquere ◽  
J.A. Quillfeldt ◽  
R.M.C. de Almeida
2021 ◽  
Vol 21 (5) ◽  
pp. 221-228
Author(s):  
Byungsik Lee

Neural network models based on deep learning algorithms are increasingly used for estimating pile load capacities as supplements of bearing capacity equations and field load tests. A series of hyperparameter tuning is required to improve the performance and reliability of developing a neural network model. In this study, the number of hidden layers and neurons, the activation functions, the optimizing algorithms of the gradient descent method, and the learning rates were tuned. The grid search method was applied for the tuning, which is a hyperpameter optimizer supplied by the developing platform. The cross-validation method was applied to enhance reliability for model validation. An appropriate number of epochs was determined using the early stopping method to prevent the overfitting of the model to the training data. The performance of the tuned optimum model evaluated for the test data set revealed that the model could estimate pile load capacities approximately with an average absolute error of 3,000 kN and a coefficient of determinant of 0.5.


Sign in / Sign up

Export Citation Format

Share Document