scholarly journals High-capacity data hiding in encrypted images using MSB prediction

Author(s):  
Pauline Puteaux ◽  
Dave Trinel ◽  
William Puech
2020 ◽  
Vol 9 (1) ◽  
pp. 1388-1390

For encrypted images (RDHEI) reversible data shielding is an important technique for embedding data into the encrypted domain. A hidden key encrypts an original picture, and additional information may be inserted into the encrypted image during or after transmission without knowing the crypting key or the original contents of the picture. The hidden message can be retrieved during the decoding process and the original image can be restored. RDHEI has begun to generate academic attention over the past couple of years. Data privacy has become a real issue with the growth of cloud computing. None of the current methods, however, will allow us to hide a great deal of information reversibly. In this document we propose a new reversible approach with a very high capacity based on MSB (most important bit) forecasting. We present two approaches: a reversible high-capacity data hiding approach with a prediction-correction error (CPEHCRDH) and an integrated-prediction error (EPE-HCRDH) reversible data hiding approach. With this approach, our findings are better than those achieved with the existing state-of-the-art approaches, both in terms of image quality recovered and embedding efficiency.


2021 ◽  
pp. 1-11
Author(s):  
Kusan Biswas

In this paper, we propose a frequency domain data hiding method for the JPEG compressed images. The proposed method embeds data in the DCT coefficients of the selected 8 × 8 blocks. According to the theories of Human Visual Systems  (HVS), human vision is less sensitive to perturbation of pixel values in the uneven areas of the image. In this paper we propose a Singular Value Decomposition based image roughness measure (SVD-IRM) using which we select the coarse 8 × 8 blocks as data embedding destinations. Moreover, to make the embedded data more robust against re-compression attack and error due to transmission over noisy channels, we employ Turbo error correcting codes. The actual data embedding is done using a proposed variant of matrix encoding that is capable of embedding three bits by modifying only one bit in block of seven carrier features. We have carried out experiments to validate the performance and it is found that the proposed method achieves better payload capacity and visual quality and is more robust than some of the recent state-of-the-art methods proposed in the literature.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Xi-Yan Li ◽  
Xia-Bing Zhou ◽  
Qing-Lei Zhou ◽  
Shi-Jing Han ◽  
Zheng Liu

With the development of cloud computing, high-capacity reversible data hiding in an encrypted image (RDHEI) has attracted increasing attention. The main idea of RDHEI is that an image owner encrypts a cover image, and then a data hider embeds secret information in the encrypted image. With the information hiding key, a receiver can extract the embedded data from the hidden image; with the encryption key, the receiver reconstructs the original image. In this paper, we can embed data in the form of random bits or scanned documents. The proposed method takes full advantage of the spatial correlation in the original images to vacate the room for embedding information before image encryption. By jointly using Sudoku and Arnold chaos encryption, the encrypted images retain the vacated room. Before the data hiding phase, the secret information is preprocessed by a halftone, quadtree, and S-BOX transformation. The experimental results prove that the proposed method not only realizes high-capacity reversible data hiding in encrypted images but also reconstructs the original image completely.


2016 ◽  
Vol 2016 (21) ◽  
pp. 1-7
Author(s):  
V. Itier ◽  
A.G. Bors ◽  
W. Puech ◽  
J.-P. Pedeboy

Optik ◽  
2016 ◽  
Vol 127 (4) ◽  
pp. 1762-1769 ◽  
Author(s):  
Wen-Chung Kuo ◽  
Shao-Hung Kuo ◽  
Chun-Cheng Wang ◽  
Lih-Chyau Wuu

Sign in / Sign up

Export Citation Format

Share Document