scholarly journals Decoding Reed-Solomon codes by solving a bilinear system with a Gröbner basis approach

Author(s):  
Magali Bardet ◽  
Rocco Mora ◽  
Jean-Pierre Tillich
2019 ◽  
Vol 13 (3-4) ◽  
pp. 229-237
Author(s):  
Stavros Kousidis ◽  
Andreas Wiemers

Abstract We improve on the first fall degree bound of polynomial systems that arise from a Weil descent along Semaev’s summation polynomials relevant to the solution of the Elliptic Curve Discrete Logarithm Problem via Gröbner basis algorithms.


2012 ◽  
Vol 47 (8) ◽  
pp. 926-941 ◽  
Author(s):  
Martin R. Albrecht ◽  
Carlos Cid ◽  
Jean-Charles Faugère ◽  
Ludovic Perret
Keyword(s):  

Author(s):  
HERVÉ PERDRY ◽  
PETER SCHUSTER

We give a constructive proof showing that every finitely generated polynomial ideal has a Gröbner basis, provided the ring of coefficients is Noetherian in the sense of Richman and Seidenberg. That is, we give a constructive termination proof for a variant of the well-known algorithm for computing the Gröbner basis. In combination with a purely order-theoretic result we have proved in a separate paper, this yields a unified constructive proof of the Hilbert basis theorem for all Noether classes: if a ring belongs to a Noether class, then so does the polynomial ring. Our proof can be seen as a constructive reworking of one of the classical proofs, in the spirit of the partial realisation of Hilbert's programme in algebra put forward by Coquand and Lombardi. The rings under consideration need not be commutative, but are assumed to be coherent and strongly discrete: that is, they admit a membership test for every finitely generated ideal. As a complement to the proof, we provide a prime decomposition for commutative rings possessing the finite-depth property.


Sign in / Sign up

Export Citation Format

Share Document