Handwritten digit recognition using state-of-the-art techniques

Author(s):  
Cheng-Lin Liu ◽  
K. Nakashima ◽  
H. Sako ◽  
H. Fujisawa
2003 ◽  
Vol 36 (10) ◽  
pp. 2271-2285 ◽  
Author(s):  
Cheng-Lin Liu ◽  
Kazuki Nakashima ◽  
Hiroshi Sako ◽  
Hiromichi Fujisawa

2019 ◽  
Vol 9 (15) ◽  
pp. 3169 ◽  
Author(s):  
Alejandro Baldominos ◽  
Yago Saez ◽  
Pedro Isasi

This paper summarizes the top state-of-the-art contributions reported on the MNIST dataset for handwritten digit recognition. This dataset has been extensively used to validate novel techniques in computer vision, and in recent years, many authors have explored the performance of convolutional neural networks (CNNs) and other deep learning techniques over this dataset. To the best of our knowledge, this paper is the first exhaustive and updated review of this dataset; there are some online rankings, but they are outdated, and most published papers survey only closely related works, omitting most of the literature. This paper makes a distinction between those works using some kind of data augmentation and works using the original dataset out-of-the-box. Also, works using CNNs are reported separately; as they are becoming the state-of-the-art approach for solving this problem. Nowadays, a significant amount of works have attained a test error rate smaller than 1% on this dataset; which is becoming non-challenging. By mid-2017, a new dataset was introduced: EMNIST, which involves both digits and letters, with a larger amount of data acquired from a database different than MNIST’s. In this paper, EMNIST is explained and some results are surveyed.


Author(s):  
Roopkatha Samanta ◽  
Soulib Ghosh ◽  
Agneet Chatterjee ◽  
Ram Sarkar

Due to the enormous application, handwritten digit recognition (HDR) has become an extremely important domain in optical character recognition (OCR)-related research. The predominant challenges faced in this domain include different photometric inconsistencies together with computational complexity. In this paper, the authors proposed a language invariant shape-based feature descriptor using the refraction property of light rays. It is to be noted that the proposed approach is novel as an adaptation of refraction property is completely new in this domain. The proposed method is assessed using five datasets of five different languages. Among the five datasets, four are offline (written Devanagari, Bangla, Arabic, and Telugu) and one is online (written in Assamese) handwritten digit datasets. The approach provides admirable outcomes for online digits whereas; it yields satisfactory results for offline handwritten digits. The method gives good result for both online and offline handwritten digits, which proves its robustness. It is also computationally less expensive compared to other state-of-the-art methods including deep learning-based models.


Sign in / Sign up

Export Citation Format

Share Document