Finite-element solution of planar arbitrarily anisotropic diffused optical waveguides

1985 ◽  
Vol 3 (4) ◽  
pp. 773-778 ◽  
Author(s):  
M. Koshiba ◽  
H. Kumagami ◽  
M. Suzuki
1991 ◽  
Vol 3 (2) ◽  
pp. 147-149 ◽  
Author(s):  
R.D. Ettinger ◽  
F.A. Fernandez ◽  
B.M.A. Rahman ◽  
J.B. Davies

2002 ◽  
Vol 38 (8) ◽  
pp. 1120-1125 ◽  
Author(s):  
S.S.A. Obayya ◽  
B.M.A. Rahman ◽  
K.T.V. Grattan ◽  
H.A. El-Mikati

1995 ◽  
pp. 455-461
Author(s):  
B. M. A. Rahman ◽  
P. A. Buah ◽  
K. T. V. Grattan

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
B. Borsos ◽  
János Karátson

Abstract The goal of this paper is to present various types of iterative solvers: gradient iteration, Newton’s method and a quasi-Newton method, for the finite element solution of elliptic problems arising in Gao type beam models (a geometrical type of nonlinearity, with respect to the Euler–Bernoulli hypothesis). Robust behaviour, i.e., convergence independently of the mesh parameters, is proved for these methods, and they are also tested with numerical experiments.


Sign in / Sign up

Export Citation Format

Share Document