A 3-D High-Order Reverse-Time Migration Method for High-Resolution Subsurface Imaging With a Multistation Ultra-Wideband Radar System

Author(s):  
Yuxian Zhang ◽  
Lixiao Wang ◽  
Naixing Feng ◽  
Mingwei Zhuang ◽  
Xiaoli Feng ◽  
...  
Geophysics ◽  
1983 ◽  
Vol 48 (11) ◽  
pp. 1514-1524 ◽  
Author(s):  
Edip Baysal ◽  
Dan D. Kosloff ◽  
John W. C. Sherwood

Migration of stacked or zero‐offset sections is based on deriving the wave amplitude in space from wave field observations at the surface. Conventionally this calculation has been carried out through a depth extrapolation. We examine the alternative of carrying out the migration through a reverse time extrapolation. This approach may offer improvements over existing migration methods, especially in cases of steeply dipping structures with strong velocity contrasts. This migration method is tested using appropriate synthetic data sets.


Geophysics ◽  
2016 ◽  
Vol 81 (6) ◽  
pp. S469-S475 ◽  
Author(s):  
Carlos Alberto da Costa Filho ◽  
Andrew Curtis

The objective of prestack depth migration is to position reflectors at their correct subsurface locations. However, migration methods often also generate artifacts along with physical reflectors, which hamper interpretation. These spurious reflectors often appear at different spatial locations in the image depending on which migration method is used. Therefore, we have devised a postimaging filter that combines two imaging conditions to preserve their similarities and to attenuate their differences. The imaging filter is based on combining the two constituent images and their envelopes that were obtained from the complex vertical traces of the images. We have used the method to combine two images resulting from different migration schemes, which produce dissimilar artifacts: a conventional migration method (equivalent to reverse time migration) and a deconvolution-based imaging method. We show how this combination may be exploited to attenuate migration artifacts in a final image. A synthetic model containing a syncline and stochastically generated small-scale heterogeneities in the velocity and density distributions was used for the numerical example. We compared the images in detail at two locations where spurious events arose and also at a true reflector. We found that the combined imaging condition has significantly fewer artifacts than either constituent image individually.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yunsong Huang ◽  
Miao Zhang ◽  
Kai Gao ◽  
Andrew Sabin ◽  
Lianjie Huang

Accurate imaging of subsurface complex structures with faults is crucial for geothermal exploration because faults are generally the primary conduit of hydrothermal flow. It is very challenging to image geothermal exploration areas because of complex geologic structures with various faults and noisy surface seismic data with strong and coherent ground-roll noise. In addition, fracture zones and most geologic formations behave as anisotropic media for seismic-wave propagation. Properly suppressing ground-roll noise and accounting for subsurface anisotropic properties are essential for high-resolution imaging of subsurface structures and faults for geothermal exploration. We develop a novel wavenumber-adaptive bandpass filter to suppress the ground-roll noise without affecting useful seismic signals. This filter adaptively exploits both characteristics of the lower frequency and the smaller velocity of the ground-roll noise than those of the signals. Consequently, this filter can effectively differentiate the ground-roll noise from the signal. We use our novel filter to attenuate the ground-roll noise in seismic data along five survey lines acquired by the U.S. Navy Geothermal Program Office at Pirouette Mountain and Eleven-Mile Canyon in Nevada, United States. We then apply our novel anisotropic least-squares reverse-time migration algorithm to the resulting data for imaging subsurface structures at the Pirouette Mountain and Eleven-Mile Canyon geothermal exploration areas. The migration method employs an efficient implicit wavefield-separation scheme to reduce image artifacts and improve the image quality. Our results demonstrate that our wavenumber-adaptive bandpass filtering method successfully suppresses the strong and coherent ground-roll noise in the land seismic data, and our anisotropic least-squares reverse-time migration produces high-resolution subsurface images of Pirouette Mountain and Eleven-Mile Canyon, facilitating accurate fault interpretation for geothermal exploration.


2022 ◽  
Author(s):  
Yaxing Li ◽  
Xiaofeng Jia ◽  
Xinming Wu ◽  
Zhicheng Geng

<p>Reverse time migration (RTM) is a technique used to obtain high-resolution images of underground reflectors; however, this method is computationally intensive when dealing with large amounts of seismic data. Multi-source RTM can significantly reduce the computational cost by processing multiple shots simultaneously. However, multi-source-based methods frequently result in crosstalk artifacts in the migrated images, causing serious interference in the imaging signals. Plane-wave migration, as a mainstream multi-source method, can yield migrated images with plane waves in different angles by implementing phase encoding of the source and receiver wavefields; however, this method frequently requires a trade-off between computational efficiency and imaging quality. We propose a method based on deep learning for removing crosstalk artifacts and enhancing the image quality of plane-wave migration images. We designed a convolutional neural network that accepts an input of seven plane-wave images at different angles and outputs a clear and enhanced image. We built 505 1024×256 velocity models, and employed each of them using plane-wave migration to produce raw images at 0°, ±20°, ±40°, and ±60° as input of the network. Labels are high-resolution images computed from the corresponding reflectivity models by convolving with a Ricker wavelet. Random sub-images with a size of 512×128 were used for training the network. Numerical examples demonstrated the effectiveness of the trained network in crosstalk removal and imaging enhancement. The proposed method is superior to both the conventional RTM and plane-wave RTM (PWRTM) in imaging resolution. Moreover, the proposed method requires only seven migrations, significantly improving the computational efficiency. In the numerical examples, the processing time required by our method was approximately 1.6% and 10% of that required by RTM and PWRTM, respectively.</p>


Sign in / Sign up

Export Citation Format

Share Document