radar system
Recently Published Documents


TOTAL DOCUMENTS

2582
(FIVE YEARS 544)

H-INDEX

45
(FIVE YEARS 6)

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Weishi Chen ◽  
Yifeng Huang ◽  
Xianfeng Lu ◽  
Jie Zhang

Purpose This paper aims to review the critical technology development of avian radar system at airports. Design/methodology/approach After the origin of avian radar technology is discussed, the target characteristics of flying birds are analyzed, including the target echo amplitude, flight speed, flight height, trajectory and micro-Doppler. Four typical airport avian radar systems of Merlin, Accipiter, Robin and CAST are introduced. The performance of different modules such as antenna, target detection and tracking, target recognition and classification, analysis of bird information together determines the detection ability of avian radar. The performances and key technologies of the ubiquitous avian radar are summarized and compared with other systems, and their applications, deployment modes, as well as their advantages and disadvantages are introduced and analyzed. Findings The ubiquitous avian radar achieves the long-time integration of target echoes, which greatly improves detection and classification ability of the targets of birds or drones, even under strong background clutter at airport. In addition, based on the big data of bird situation accumulated by avian radar, the rules of bird activity around the airport can be mined to guide the bird avoidance work. Originality/value This paper presented a novel avian radar system based on ubiquitous digital radar technology. The authors’ experience has confirmed that this system can be effective for airport bird strike prevention and management. In the future, the avian radar system will see continued improvement in both software and hardware, as the system is designed to be easily extensible.


2022 ◽  
Vol 40 (1) ◽  
pp. 1-10
Author(s):  
Fasil Tesema ◽  
Noora Partamies ◽  
Daniel K. Whiter ◽  
Yasunobu Ogawa

Abstract. Energetic particle precipitation associated with pulsating aurora (PsA) can reach down to lower mesospheric altitudes and deplete ozone. It is well documented that pulsating aurora is a common phenomenon during substorm recovery phases. This indicates that using magnetic indices to model the chemistry induced by PsA electrons could underestimate the energy deposition in the atmosphere. Integrating satellite measurements of precipitating electrons in models is considered to be an alternative way to account for such an underestimation. One way to do this is to test and validate the existing ion chemistry models using integrated measurements from satellite and ground-based observations. By using satellite measurements, an average or typical spectrum of PsA electrons can be constructed and used as an input in models to study the effects of the energetic electrons in the atmosphere. In this study, we compare electron densities from the EISCAT (European Incoherent Scatter scientific radar system) radars with auroral ion chemistry and the energetics model by using pulsating aurora spectra derived from the Polar Operational Environmental Satellite (POES) as an energy input for the model. We found a good agreement between the model and EISCAT electron densities in the region dominated by patchy pulsating aurora. However, the magnitude of the observed electron densities suggests a significant difference in the flux of precipitating electrons for different pulsating aurora types (structures) observed.


2022 ◽  
Vol 20 (1) ◽  
pp. 153-161
Author(s):  
Fernando Lara ◽  
Marcelo Ortiz ◽  
Enrique V. Carrera ◽  
Alexis F. Tinoco ◽  
Hector Moya ◽  
...  
Keyword(s):  

2022 ◽  
Vol 317 ◽  
pp. 125768
Author(s):  
Hai Liu ◽  
Jingyang Zhong ◽  
Feng Ding ◽  
Xu Meng ◽  
Chao Liu ◽  
...  

Author(s):  
Indu Priya Eedara ◽  
Moeness G. Amin ◽  
Ahmad Hoorfar ◽  
Batu K. Chalise

2021 ◽  
Vol 13 (24) ◽  
pp. 5145
Author(s):  
Weiwei Wang ◽  
Pengfei Wan ◽  
Jun Zhang ◽  
Zhixin Liu ◽  
Jingwei Xu

Medium pulse repetition frequency (MPRF) is an important mode in airborne radar system. Since MPRF mode brings both Doppler and range ambiguities, it causes difficulty for the airborne radar to suppress ground or sea clutter. In recent years, it has been pointed out that the frequency diverse array (FDA) radar is capable of separating the range ambiguous clutter, which is helpful for the airborne radar in detecting weak moving targets originally buried in ambiguous clutter. To further improve the ambiguous clutter separation performance, an enhanced pre-STAP beamforming for range ambiguous clutter suppression is proposed for the vertical FDA planar array in this paper. With consideration of range dependence of the vertical spatial frequency, a series of pre-STAP beamformers are designed using a priori knowledge of platform and radar parameters. The notches of the beamformers are aligned with the ambiguous clutter to extract echoes from desired range region while suppressing clutter from ambiguous range regions. The notches can be widened by using covariance matrix tapering technique and the proposed method can improve the performance of range ambiguous clutter separation with limited degrees-of-freedom (DOFs). Simulation examples show the effectiveness of the proposed method.


2021 ◽  
Vol 19 ◽  
pp. 23-29
Author(s):  
Christoph Dahl ◽  
Michael Vogt ◽  
Ilona Rolfes

Abstract. In this contribution, the design of a multiple-input multiple-output (MIMO) radar system in 77–81 GHz range with 18 transmitting antennas and 24 receiving antennas for measuring the height profile of bulk solids in silos, is presented and discussed. The antenna array topologies are optimized by utilizing space filling fractals in order to approximate a circular shaped antenna array on a hexagonal grid. The proposed MIMO radar system achieves an angular resolution of 3.1∘ for a maximum scanning angle of ±45∘ and a side lobe suppression of 12.6 dB. The performance of the system has been evaluated by test measurements on a sand heap, showing an improved measurement accuracy compared to conventional radar level systems.


Sign in / Sign up

Export Citation Format

Share Document