scholarly journals Internal ∞-Categorical Models of Dependent Type Theory : Towards 2LTT Eating HoTT

Author(s):  
Nicolai Kraus
Author(s):  
Martin E. Bidlingmaier

Abstract Locally cartesian closed (lcc) categories are natural categorical models of extensional dependent type theory. This paper introduces the “gros” semantics in the category of lcc categories: Instead of constructing an interpretation in a given individual lcc category, we show that also the category of all lcc categories can be endowed with the structure of a model of dependent type theory. The original interpretation in an individual lcc category can then be recovered by slicing. As in the original interpretation, we face the issue of coherence: Categorical structure is usually preserved by functors only up to isomorphism, whereas syntactic substitution commutes strictly with all type-theoretic structures. Our solution involves a suitable presentation of the higher category of lcc categories as model category. To that end, we construct a model category of lcc sketches, from which we obtain by the formalism of algebraically (co)fibrant objects model categories of strict lcc categories and then algebraically cofibrant strict lcc categories. The latter is our model of dependent type theory.


2014 ◽  
Vol 49 (1) ◽  
pp. 503-515 ◽  
Author(s):  
Robert Atkey ◽  
Neil Ghani ◽  
Patricia Johann

2019 ◽  
Vol 3 (ICFP) ◽  
pp. 1-29 ◽  
Author(s):  
Daniel Gratzer ◽  
Jonathan Sterling ◽  
Lars Birkedal

Author(s):  
Aleš Bizjak ◽  
Hans Bugge Grathwohl ◽  
Ranald Clouston ◽  
Rasmus E. Møgelberg ◽  
Lars Birkedal

2017 ◽  
Vol 1 (ICFP) ◽  
pp. 1-29 ◽  
Author(s):  
Andreas Nuyts ◽  
Andrea Vezzosi ◽  
Dominique Devriese

2004 ◽  
Vol 14 (1) ◽  
pp. 1-2
Author(s):  
GILLES BARTHE ◽  
PETER DYBJEN ◽  
PETER THIEMANN

Modern programming languages rely on advanced type systems that detect errors at compile-time. While the benefits of type systems have long been recognized, there are some areas where the standard systems in programming languages are not expressive enough. Language designers usually trade expressiveness for decidability of the type system. Some interesting programs will always be rejected (despite their semantical soundness) or be assigned uninformative types.


2015 ◽  
Vol 25 (5) ◽  
pp. 1010-1039 ◽  
Author(s):  
BENEDIKT AHRENS ◽  
KRZYSZTOF KAPULKIN ◽  
MICHAEL SHULMAN

We develop category theory within Univalent Foundations, which is a foundational system for mathematics based on a homotopical interpretation of dependent type theory. In this system, we propose a definition of ‘category’ for which equality and equivalence of categories agree. Such categories satisfy a version of the univalence axiom, saying that the type of isomorphisms between any two objects is equivalent to the identity type between these objects; we call them ‘saturated’ or ‘univalent’ categories. Moreover, we show that any category is weakly equivalent to a univalent one in a universal way. In homotopical and higher-categorical semantics, this construction corresponds to a truncated version of the Rezk completion for Segal spaces, and also to the stack completion of a prestack.


Sign in / Sign up

Export Citation Format

Share Document