Chinese word sense disambiguation by combining pseudo training data

Author(s):  
Xiaojie Wang ◽  
Y. Matsumoto
2019 ◽  
Vol 26 (5) ◽  
pp. 438-446 ◽  
Author(s):  
Ahmad Pesaranghader ◽  
Stan Matwin ◽  
Marina Sokolova ◽  
Ali Pesaranghader

Abstract Objective In biomedicine, there is a wealth of information hidden in unstructured narratives such as research articles and clinical reports. To exploit these data properly, a word sense disambiguation (WSD) algorithm prevents downstream difficulties in the natural language processing applications pipeline. Supervised WSD algorithms largely outperform un- or semisupervised and knowledge-based methods; however, they train 1 separate classifier for each ambiguous term, necessitating a large number of expert-labeled training data, an unattainable goal in medical informatics. To alleviate this need, a single model that shares statistical strength across all instances and scales well with the vocabulary size is desirable. Materials and Methods Built on recent advances in deep learning, our deepBioWSD model leverages 1 single bidirectional long short-term memory network that makes sense prediction for any ambiguous term. In the model, first, the Unified Medical Language System sense embeddings will be computed using their text definitions; and then, after initializing the network with these embeddings, it will be trained on all (available) training data collectively. This method also considers a novel technique for automatic collection of training data from PubMed to (pre)train the network in an unsupervised manner. Results We use the MSH WSD dataset to compare WSD algorithms, with macro and micro accuracies employed as evaluation metrics. deepBioWSD outperforms existing models in biomedical text WSD by achieving the state-of-the-art performance of 96.82% for macro accuracy. Conclusions Apart from the disambiguation improvement and unsupervised training, deepBioWSD depends on considerably less number of expert-labeled data as it learns the target and the context terms jointly. These merit deepBioWSD to be conveniently deployable in real-time biomedical applications.


2002 ◽  
Vol 8 (4) ◽  
pp. 293-310 ◽  
Author(s):  
DAVID YAROWSKY ◽  
RADU FLORIAN

This paper presents a comprehensive empirical exploration and evaluation of a diverse range of data characteristics which influence word sense disambiguation performance. It focuses on a set of six core supervised algorithms, including three variants of Bayesian classifiers, a cosine model, non-hierarchical decision lists, and an extension of the transformation-based learning model. Performance is investigated in detail with respect to the following parameters: (a) target language (English, Spanish, Swedish and Basque); (b) part of speech; (c) sense granularity; (d) inclusion and exclusion of major feature classes; (e) variable context width (further broken down by part-of-speech of keyword); (f) number of training examples; (g) baseline probability of the most likely sense; (h) sense distributional entropy; (i) number of senses per keyword; (j) divergence between training and test data; (k) degree of (artificially introduced) noise in the training data; (l) the effectiveness of an algorithm's confidence rankings; and (m) a full keyword breakdown of the performance of each algorithm. The paper concludes with a brief analysis of similarities, differences, strengths and weaknesses of the algorithms and a hierarchical clustering of these algorithms based on agreement of sense classification behavior. Collectively, the paper constitutes the most comprehensive survey of evaluation measures and tests yet applied to sense disambiguation algorithms. And it does so over a diverse range of supervised algorithms, languages and parameter spaces in single unified experimental framework.


Author(s):  
Hoa Trang Dang ◽  
Ching-yi Chia ◽  
Martha Palmer ◽  
Fu-Dong Chiou

2021 ◽  
pp. 1-55
Author(s):  
Daniel Loureiro ◽  
Kiamehr Rezaee ◽  
Mohammad Taher Pilehvar ◽  
Jose Camacho-Collados

Abstract Transformer-based language models have taken many fields in NLP by storm. BERT and its derivatives dominate most of the existing evaluation benchmarks, including those for Word Sense Disambiguation (WSD), thanks to their ability in capturing context-sensitive semantic nuances. However, there is still little knowledge about their capabilities and potential limitations in encoding and recovering word senses. In this article, we provide an in-depth quantitative and qualitative analysis of the celebrated BERT model with respect to lexical ambiguity. One of the main conclusions of our analysis is that BERT can accurately capture high-level sense distinctions, even when a limited number of examples is available for each word sense. Our analysis also reveals that in some cases language models come close to solving coarse-grained noun disambiguation under ideal conditions in terms of availability of training data and computing resources. However, this scenario rarely occurs in real-world settings and, hence, many practical challenges remain even in the coarse-grained setting. We also perform an in-depth comparison of the two main language model based WSD strategies, i.e., fine-tuning and feature extraction, finding that the latter approach is more robust with respect to sense bias and it can better exploit limited available training data. In fact, the simple feature extraction strategy of averaging contextualized embeddings proves robust even using only three training sentences per word sense, with minimal improvements obtained by increasing the size of this training data.


Sign in / Sign up

Export Citation Format

Share Document