scholarly journals deepBioWSD: effective deep neural word sense disambiguation of biomedical text data

2019 ◽  
Vol 26 (5) ◽  
pp. 438-446 ◽  
Author(s):  
Ahmad Pesaranghader ◽  
Stan Matwin ◽  
Marina Sokolova ◽  
Ali Pesaranghader

Abstract Objective In biomedicine, there is a wealth of information hidden in unstructured narratives such as research articles and clinical reports. To exploit these data properly, a word sense disambiguation (WSD) algorithm prevents downstream difficulties in the natural language processing applications pipeline. Supervised WSD algorithms largely outperform un- or semisupervised and knowledge-based methods; however, they train 1 separate classifier for each ambiguous term, necessitating a large number of expert-labeled training data, an unattainable goal in medical informatics. To alleviate this need, a single model that shares statistical strength across all instances and scales well with the vocabulary size is desirable. Materials and Methods Built on recent advances in deep learning, our deepBioWSD model leverages 1 single bidirectional long short-term memory network that makes sense prediction for any ambiguous term. In the model, first, the Unified Medical Language System sense embeddings will be computed using their text definitions; and then, after initializing the network with these embeddings, it will be trained on all (available) training data collectively. This method also considers a novel technique for automatic collection of training data from PubMed to (pre)train the network in an unsupervised manner. Results We use the MSH WSD dataset to compare WSD algorithms, with macro and micro accuracies employed as evaluation metrics. deepBioWSD outperforms existing models in biomedical text WSD by achieving the state-of-the-art performance of 96.82% for macro accuracy. Conclusions Apart from the disambiguation improvement and unsupervised training, deepBioWSD depends on considerably less number of expert-labeled data as it learns the target and the context terms jointly. These merit deepBioWSD to be conveniently deployable in real-time biomedical applications.

2019 ◽  
Vol 55 (2) ◽  
pp. 339-365
Author(s):  
Arkadiusz Janz ◽  
Maciej Piasecki

Abstract Automatic word sense disambiguation (WSD) has proven to be an important technique in many natural language processing tasks. For many years the problem of sense disambiguation has been approached with a wide range of methods, however, it is still a challenging problem, especially in the unsupervised setting. One of the well-known and successful approaches to WSD are knowledge-based methods leveraging lexical knowledge resources such as wordnets. As the knowledge-based approaches mostly do not use any labelled training data their performance strongly relies on the structure and the quality of used knowledge sources. However, a pure knowledge-base such as a wordnet cannot reflect all the semantic knowledge necessary to correctly disambiguate word senses in text. In this paper we explore various expansions to plWordNet as knowledge-bases for WSD. Semantic links extracted from a large valency lexicon (Walenty), glosses and usage examples, Wikipedia articles and SUMO ontology are combined with plWordNet and tested in a PageRank-based WSD algorithm. In addition, we analyse also the influence of lexical semantics vector models extracted with the help of the distributional semantics methods. Several new Polish test data sets for WSD are also introduced. All the resources, methods and tools are available on open licences.


2019 ◽  
Vol 9 (2) ◽  
pp. 3985-3989 ◽  
Author(s):  
P. Sharma ◽  
N. Joshi

The purpose of word sense disambiguation (WSD) is to find the meaning of the word in any context with the help of a computer, to find the proper meaning of a lexeme in the available context in the problem area and the relationship between lexicons. This is done using natural language processing (NLP) techniques which involve queries from machine translation (MT), NLP specific documents or output text. MT automatically translates text from one natural language into another. Several application areas for WSD involve information retrieval (IR), lexicography, MT, text processing, speech processing etc. Using this knowledge-based technique, we are investigating Hindi WSD in this article. It involves incorporating word knowledge from external knowledge resources to remove the equivocalness of words. In this experiment, we tried to develop a WSD tool by considering a knowledge-based approach with WordNet of Hindi. The tool uses the knowledge-based LESK algorithm for WSD for Hindi. Our proposed system gives an accuracy of about 71.4%.


Information ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 452
Author(s):  
Ammar Arbaaeen ◽  
Asadullah Shah

Within the space of question answering (QA) systems, the most critical module to improve overall performance is question analysis processing. Extracting the lexical semantic of a Natural Language (NL) question presents challenges at syntactic and semantic levels for most QA systems. This is due to the difference between the words posed by a user and the terms presently stored in the knowledge bases. Many studies have achieved encouraging results in lexical semantic resolution on the topic of word sense disambiguation (WSD), and several other works consider these challenges in the context of QA applications. Additionally, few scholars have examined the role of WSD in returning potential answers corresponding to particular questions. However, natural language processing (NLP) is still facing several challenges to determine the precise meaning of various ambiguities. Therefore, the motivation of this work is to propose a novel knowledge-based sense disambiguation (KSD) method for resolving the problem of lexical ambiguity associated with questions posed in QA systems. The major contribution is the proposed innovative method, which incorporates multiple knowledge sources. This includes the question’s metadata (date/GPS), context knowledge, and domain ontology into a shallow NLP. The proposed KSD method is developed into a unique tool for a mobile QA application that aims to determine the intended meaning of questions expressed by pilgrims. The experimental results reveal that our method obtained comparable and better accuracy performance than the baselines in the context of the pilgrimage domain.


Author(s):  
Ali Saeed ◽  
Rao Muhammad Adeel Nawab ◽  
Mark Stevenson

Word Sense Disambiguation (WSD), the process of automatically identifying the correct meaning of a word used in a given context, is a significant challenge in Natural Language Processing. A range of approaches to the problem has been explored by the research community. The majority of these efforts has focused on a relatively small set of languages, particularly English. Research on WSD for South Asian languages, particularly Urdu, is still in its infancy. In recent years, deep learning methods have proved to be extremely successful for a range of Natural Language Processing tasks. The main aim of this study is to apply, evaluate, and compare a range of deep learning methods approaches to Urdu WSD (both Lexical Sample and All-Words) including Simple Recurrent Neural Networks, Long-Short Term Memory, Gated Recurrent Units, Bidirectional Long-Short Term Memory, and Ensemble Learning. The evaluation was carried out on two benchmark corpora: (1) the ULS-WSD-18 corpus and (2) the UAW-WSD-18 corpus. Results (Accuracy = 63.25% and F1-Measure = 0.49) show that a deep learning approach outperforms previously reported results for the Urdu All-Words WSD task, whereas performance using deep learning approaches (Accuracy = 72.63% and F1-Measure = 0.60) are low in comparison to previously reported for the Urdu Lexical Sample task.


2016 ◽  
Vol 13 (10) ◽  
pp. 6929-6934
Author(s):  
Junting Chen ◽  
Liyun Zhong ◽  
Caiyun Cai

Word sense disambiguation (WSD) in natural language text is a fundamental semantic understanding task at the lexical level in natural language processing (NLP) applications. Kernel methods such as support vector machine (SVM) have been successfully applied to WSD. This is mainly due to their relatively high classification accuracy as well as their ability to handle high dimensional and sparse data. A significant challenge in WSD is to reduce the need for labeled training data while maintaining an acceptable performance. In this paper, we present a semi-supervised technique using the exponential kernel for WSD. Specifically, the semantic similarities between terms are first determined with both labeled and unlabeled training data by means of a diffusion process on a graph defined by lexicon and co-occurrence information, and the exponential kernel is then constructed based on the learned semantic similarity. Finally, the SVM classifier trains a model for each class during the training phase and this model is then applied to all test examples in the test phase. The main feature of this approach is that it takes advantage of the exponential kernel to reveal the semantic similarities between terms in an unsupervised manner, which provides a kernel framework for semi-supervised learning. Experiments on several SENSEVAL benchmark data sets demonstrate the proposed approach is sound and effective.


2016 ◽  
Vol 4 ◽  
pp. 197-213 ◽  
Author(s):  
Silvana Hartmann ◽  
Judith Eckle-Kohler ◽  
Iryna Gurevych

We present a new approach for generating role-labeled training data using Linked Lexical Resources, i.e., integrated lexical resources that combine several resources (e.g., Word-Net, FrameNet, Wiktionary) by linking them on the sense or on the role level. Unlike resource-based supervision in relation extraction, we focus on complex linguistic annotations, more specifically FrameNet senses and roles. The automatically labeled training data ( www.ukp.tu-darmstadt.de/knowledge-based-srl/ ) are evaluated on four corpora from different domains for the tasks of word sense disambiguation and semantic role classification. Results show that classifiers trained on our generated data equal those resulting from a standard supervised setting.


This paper discuss various technique of word sense disambiguation. In WSD we disambiguate the correct sense of target word present in the text. WSD is a challenging field in the natural language processing, it helps in information retrieval, information extraction, machine learning. There are two approaches for WSD machine learning approach and knowledge based approach. In Knowledge based approach a external resource is used to help in disambiguation process, but in Machine learning approach a corpus is used whether it is annotated, un-annotated or both


2021 ◽  
Vol 6 (22) ◽  
pp. 01-14
Author(s):  
Mohammad Hafizi Jainal ◽  
Saidah Saad ◽  
Rabiah Abdul Kadir

Background: Word Sense Disambiguation (WSD) is known to have a detrimental effect on the precision of information retrieval systems, where WSD is the ability to identify the meanings of words in context. There is a challenge in inference-correct-sensing on ambiguous words. Through many years of research, there have been various solutions to WSD that have been proposed; they have been divided into supervised and knowledge-based unsupervised. Objective: The first objective of this study was to explore the state-of-art of the WSD method with a hybrid method using ontology concepts. Then, with the findings, we may understand which tools are available to build WSD components. The second objective was to determine which method would be the best in giving good performance results of WSD, by analysing how the methods were used to answer specific WSD questions, their production, and how their performance was analysed. Methods: A review of the literature was conducted relating to the performance of WSD research, which used a comparison method of information retrieval analysis. The study compared the types of methods used in case, and examined methods for tools production, tools training, and analysis of performance. Results: In total 12 papers were found that satisfied all 3 inclusion criteria, and there was an anchor paper assigned to be referred. We chose the knowledge-based unsupervised approach because it has fewer word sets constraints than the supervised approaches which require training data. Concept-based ontology will help WSD in finding the semantic words concept with respect to another concept around it. Conclusion: Many methods was explored and compared to determine the most suitable way to build a WSD model based on semantics between words in query texts that can be related to the knowledge concept by using ontological knowledge presentation.


2014 ◽  
Vol 1049-1050 ◽  
pp. 1327-1338
Author(s):  
Guo Zhen Zhao ◽  
Wan Li Zuo

Word sense disambiguation as a central research topic in natural language processing can promote the development of many applications such as information retrieval, speech synthesis, machine translation, summarization and question answering. Previous approaches can be grouped into three categories: supervised, unsupervised and knowledge-based. The accuracy of supervised methods is the highest, but they suffer from knowledge acquisition bottleneck. Unsupervised method can avoid knowledge acquisition bottleneck, but its effect is not satisfactory. With the built-up of large-scale knowledge, knowledge-based approach has attracted more and more attention. This paper introduces a new context weighting method, and based on which proposes a novel semi-supervised approach for word sense disambiguation. The significant contribution of our method is that thesaurus and machine learning techniques are integrated in word sense disambiguation. Compared with the state of the art on the test data of the English all words disambiguation task in Sensaval-3, our method yields obvious improvements over existing methods in nouns, adjectives and verbs disambiguation.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Muhammad Yasir ◽  
Li Chen ◽  
Amna Khatoon ◽  
Muhammad Amir Malik ◽  
Fazeel Abid

Mixed script identification is a hindrance for automated natural language processing systems. Mixing cursive scripts of different languages is a challenge because NLP methods like POS tagging and word sense disambiguation suffer from noisy text. This study tackles the challenge of mixed script identification for mixed-code dataset consisting of Roman Urdu, Hindi, Saraiki, Bengali, and English. The language identification model is trained using word vectorization and RNN variants. Moreover, through experimental investigation, different architectures are optimized for the task associated with Long Short-Term Memory (LSTM), Bidirectional LSTM, Gated Recurrent Unit (GRU), and Bidirectional Gated Recurrent Unit (Bi-GRU). Experimentation achieved the highest accuracy of 90.17 for Bi-GRU, applying learned word class features along with embedding with GloVe. Moreover, this study addresses the issues related to multilingual environments, such as Roman words merged with English characters, generative spellings, and phonetic typing.


Sign in / Sign up

Export Citation Format

Share Document