multiple classifiers
Recently Published Documents


TOTAL DOCUMENTS

450
(FIVE YEARS 81)

H-INDEX

32
(FIVE YEARS 5)

2022 ◽  
Vol 9 (1) ◽  
pp. 99-109
Author(s):  
Jindal et al. ◽  

A signature is a handwritten representation that is commonly used to validate and recognize the writer individually. An automated verification system is mandatory to verify the identity. The signature essentially displays a variety of dynamics and the static characteristics differ with time and place. Many scientists have already found different algorithms to boost the signature verification system function extraction point. The paper is aimed at multiplying two different ways to solve the problem in digital, manual, or some other means of verifying signatures. The various characteristics of the signature were found through the most adequately implemented methods of machine learning (support vector and decision tree). In addition, the characteristics were listed after measuring the effects. An experiment was performed in various language databases. More precision was obtained from the feature.


Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2880
Author(s):  
Altyeb Taha ◽  
Omar Barukab ◽  
Sharaf Malebary

One of the most commonly used operating systems for smartphones is Android. The open-source nature of the Android operating system and the ability to include third-party Android apps from various markets has led to potential threats to user privacy. Malware developers use sophisticated methods that are intentionally designed to bypass the security checks currently used in smartphones. This makes effective detection of Android malware apps a difficult problem and important issue. This paper proposes a novel fuzzy integral-based multi-classifier ensemble to improve the accuracy of Android malware classification. The proposed approach utilizes the Choquet fuzzy integral as an aggregation function for the purpose of combining and integrating the classification results of several classifiers such as XGBoost, Random Forest, Decision Tree, AdaBoost, and LightGBM. Moreover, the proposed approach utilizes an adaptive fuzzy measure to consider the dynamic nature of the data in each classifier and the consistency and coalescence between each possible subset of classifiers. This enables the proposed approach to aggregate the classification results from the multiple classifiers. The experimental results using the dataset, consisting of 9476 Android goodware apps and 5560 malware Android apps, show that the proposed approach for Android malware classification based on the Choquet fuzzy integral technique outperforms the single classifiers and achieves the highest accuracy of 95.08%.


2021 ◽  
pp. 387-402
Author(s):  
Abhijit S. Pandya ◽  
Robert B. Macy
Keyword(s):  

2021 ◽  
Vol 11 (19) ◽  
pp. 8809
Author(s):  
Ignacio Moreno-Torres ◽  
Andrés Lozano ◽  
Enrique Nava ◽  
Rosa Bermúdez-de-Alvear

Automatic tools to detect hypernasality have been traditionally designed to analyze sustained vowels exclusively. This is in sharp contrast with clinical recommendations, which consider it necessary to use a variety of utterance types (e.g., repeated syllables, sustained sounds, sentences, etc.) This study explores the feasibility of detecting hypernasality automatically based on speech samples other than sustained vowels. The participants were 39 patients and 39 healthy controls. Six types of utterances were used: counting 1-to-10 and repetition of syllable sequences, sustained consonants, sustained vowel, words and sentences. The recordings were obtained, with the help of a mobile app, from Spain, Chile and Ecuador. Multiple acoustic features were computed from each utterance (e.g., MFCC, formant frequency) After a selection process, the best 20 features served to train different classification algorithms. Accuracy was the highest with syllable sequences and also with some words and sentences. Accuracy increased slightly by training the classifiers with between two and three utterances. However, the best results were obtained by combining the results of multiple classifiers. We conclude that protocols for automatic evaluation of hypernasality should include a variety of utterance types. It seems feasible to detect hypernasality automatically with mobile devices.


2021 ◽  
Author(s):  
Takumi Sonoda ◽  
Masaya Nakata

Surrogate-assisted multi-objective evolutionary algorithms have advanced the field of computationally expensive optimization, but their progress is often restricted to low-dimensional problems. This manuscript presents a multiple classifiers-assisted evolutionary algorithm based on decomposition, which is adapted for high-dimensional expensive problems in terms of the following two insights. Compared to approximation-based surrogates, the accuracy of classification-based surrogates is robust for few high-dimensional training samples. Further, multiple local classifiers can hedge the risk of over-fitting issues. Accordingly, the proposed algorithm builds multiple classifiers with support vector machines on a decomposition-based multi-objective algorithm, wherein each local classifier is trained for a corresponding scalarization function. Experimental results statistically confirm that the proposed algorithm is competitive to the state-of-the-art algorithms and computationally efficient as well.


2021 ◽  
Author(s):  
Takumi Sonoda ◽  
Masaya Nakata

Surrogate-assisted multi-objective evolutionary algorithms have advanced the field of computationally expensive optimization, but their progress is often restricted to low-dimensional problems. This manuscript presents a multiple classifiers-assisted evolutionary algorithm based on decomposition, which is adapted for high-dimensional expensive problems in terms of the following two insights. Compared to approximation-based surrogates, the accuracy of classification-based surrogates is robust for few high-dimensional training samples. Further, multiple local classifiers can hedge the risk of over-fitting issues. Accordingly, the proposed algorithm builds multiple classifiers with support vector machines on a decomposition-based multi-objective algorithm, wherein each local classifier is trained for a corresponding scalarization function. Experimental results statistically confirm that the proposed algorithm is competitive to the state-of-the-art algorithms and computationally efficient as well.


Sign in / Sign up

Export Citation Format

Share Document