Data-driven parameter estimation of steady-state load models

Author(s):  
Tushar ◽  
Shikhar Pandey ◽  
Anurag K. Srivastava ◽  
Penn Markham ◽  
Navin Bhatt ◽  
...  
Fluids ◽  
2021 ◽  
Vol 6 (8) ◽  
pp. 266
Author(s):  
Péter German ◽  
Mauricio E. Tano ◽  
Carlo Fiorina ◽  
Jean C. Ragusa

This work presents a data-driven Reduced-Order Model (ROM) for parametric convective heat transfer problems in porous media. The intrusive Proper Orthogonal Decomposition aided Reduced-Basis (POD-RB) technique is employed to reduce the porous medium formulation of the incompressible Reynolds-Averaged Navier–Stokes (RANS) equations coupled with heat transfer. Instead of resolving the exact flow configuration with high fidelity, the porous medium formulation solves a homogenized flow in which the fluid-structure interactions are captured via volumetric flow resistances with nonlinear, semi-empirical friction correlations. A supremizer approach is implemented for the stabilization of the reduced fluid dynamics equations. The reduced nonlinear flow resistances are treated using the Discrete Empirical Interpolation Method (DEIM), while the turbulent eddy viscosity and diffusivity are approximated by adopting a Radial Basis Function (RBF) interpolation-based approach. The proposed method is tested using a 2D numerical model of the Molten Salt Fast Reactor (MSFR), which involves the simulation of both clean and porous medium regions in the same domain. For the steady-state example, five model parameters are considered to be uncertain: the magnitude of the pumping force, the external coolant temperature, the heat transfer coefficient, the thermal expansion coefficient, and the Prandtl number. For transient scenarios, on the other hand, the coastdown-time of the pump is the only uncertain parameter. The results indicate that the POD-RB-ROMs are suitable for the reduction of similar problems. The relative L2 errors are below 3.34% for every field of interest for all cases analyzed, while the speedup factors vary between 54 (transient) and 40,000 (steady-state).


2015 ◽  
Vol 3 (1) ◽  
pp. 1
Author(s):  
Niklas Andersson ◽  
Per-Ola Larsson ◽  
Johan Åkesson ◽  
Niclas Carlsson ◽  
Staffan Skålén ◽  
...  

A polyethylene plant at Borealis AB is modelled in the Modelica language and considered for parameter estimations at grade transitions. Parameters have been estimated for both the steady-state and the dynamic case using the JModelica.org platform, which offers tools for steady-state parameter estimation and supports simulation with parameter sensitivies. The model contains 31 candidate parameters, giving a huge amount of possible parameter combinations. The best parameter sets have been chosen using a parameter-selection algorithm that identified parameter sets with poor numerical properties. The parameter-selection algorithm reduces the number of parameter sets that is necessary to explore. The steady-state differs from the dynamic case with respect to parameter selection. Validations of the parameter estimations in the dynamic case show a significant reduction in an objective value used to evaluate the quality of the solution from that of the nominal reference, where the nominal parameter values are used.


Author(s):  
David Rodriguez ◽  
Jose A. Alfaya ◽  
Guillermo Bejarano ◽  
Manuel G. Ortega ◽  
F. Castano

2019 ◽  
Vol 467 ◽  
pp. 87-99 ◽  
Author(s):  
Karen Larson ◽  
Loukas Zagkos ◽  
Mark Mc Auley ◽  
Jason Roberts ◽  
Nikos I. Kavallaris ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document