A New Non-Isolated Buck-Boost Converter with High Voltage Gain and Positive Output Voltage for Renewable Energy Applications

Author(s):  
Yaser Babazadeh ◽  
Ebrahim Babaei ◽  
Mehran Sabahi
2014 ◽  
Vol 61 (12) ◽  
pp. 6739-6746 ◽  
Author(s):  
George Cajazeiras Silveira ◽  
Fernando Lessa Tofoli ◽  
Luiz Daniel Santos Bezerra ◽  
Rene Pastor Torrico-Bascope

2014 ◽  
Vol 573 ◽  
pp. 83-88
Author(s):  
A. Marikkannan ◽  
B.V. Manikandan ◽  
S. Jeyanthi

The interest toward the application of fuel cells is increasing in the last years mainly due to the possibility of highly efficient decentralized clean energy generation. The output voltage of fuel-cell stacks is generally below 50 V. Consequently, low-power applications with high output voltage require a high gain for proper operation. A zero-voltage-switching (ZVS) dc–dc converter with high voltage gain is proposed for fuel cell as a front-end converter. It consists of a ZVS boost converter stage and a ZVS half-bridge converter stage and two stages are merged into a single stage. The ZVS boost converter stage provides a continuous input current and ZVS operation of the power switches. The ZVS half-bridge converter stage provides a high voltage gain. The principle of operation and system analysis are presented. Theoretical analysis and simulation result of the proposed converter were verified.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1480 ◽  
Author(s):  
Javier Loranca-Coutiño ◽  
Carlos A. Villarreal-Hernandez ◽  
Jonathan C. Mayo-Maldonado ◽  
Jesús E. Valdez-Resendiz ◽  
Adolfo R. Lopez-Nuñez ◽  
...  

This work presents a power-electronics based system for renewable energy applications, the system is driven with an only one switch quadratic type boost converter, the discussed converter is based on a stack of switching stages which provide a large voltage gain, a desirable feature for fuel cell generation systems, the converters gain function is the quadratic boost-type converters; furthermore, the topology can be extended. The major benefit of the topology is that there is not a capacitor that sustains the entire output voltage, in contrast to other similar topologies in which there is a capacitor rated to the output port voltage, there is no high voltage capacitor in this system. Experimental verification is presented to confirm the system principles; experiments included a fuel cell emulator that was built and used for the experiments.


2014 ◽  
Vol 931-932 ◽  
pp. 910-914
Author(s):  
Matheepot Phattanasak ◽  
Wattana Kaewmanee ◽  
Jean Philippe Martin ◽  
Serge Pierfederici ◽  
Bernard Davat

This paper presents an interleaved double dual boost converter used in renewable energy application, for example, photovoltaic cell. The converter is interesting because its high voltage gain property. Its operating functions in the possible cases are detailed. Moreover, the presence of negative current in a certain operating point is investigated. The validation of the proposed system is done through experimental results.


Sign in / Sign up

Export Citation Format

Share Document