boost converter
Recently Published Documents


TOTAL DOCUMENTS

5856
(FIVE YEARS 1824)

H-INDEX

71
(FIVE YEARS 11)

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 610
Author(s):  
Girish Ganesan Ramanathan ◽  
Naomitsu Urasaki

DC-DC boost converters are necessary to extract power from solar panels. The output voltage from these panels is far lower than the utility voltage levels. One of the main functions of the boost converter is to provide a considerable step-up gain to interface the panel to the utility lines. There are several techniques used to boost the low panel voltage. Some of the issues faced by these topologies are a high duty ratio operation, complex design with multiple active switches and discontinuous input current that affects the power drawn from the panel. This paper presents a boost converter topology that combines the advantages of an interleaved structure, a voltage lift capacitor and a passive voltage multiplier network. A mathematical analysis of the proposed converter during its various modes of operation is presented. A 100 W prototype of the proposed converter is designed and tested. The prototype is controlled by a PIC16F18455 microcontroller. The converter is capable of achieving a gain of 10 without operating at extremely high duty ratios. The voltage stress of the switch is far lower than the maximum output voltage.


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 264
Author(s):  
Dogga Raveendhra ◽  
Poojitha Rajana ◽  
Kalamchety Srinivasa Ravi Kumar ◽  
Praveen Jugge ◽  
Ramesh Devarapalli ◽  
...  

A step-up for a non-isolated interleaved differential capacitor clamped boost (IDCCB) DC–DC converter is proposed in this manuscript. Because of its ability to produce high voltage gains, it is used in high-power applications. This converter’s modelling and control design are applicable to any number of phases. A six-phase interleaved differential capacitor clamped boost prototype is tested in this work, with an input voltage of 60 V, an output voltage of 360 V, and a nominal output power of 2.2 kW. The components of the converter are placed and controlled in such a way that the output voltage is the sum of the two capacitor voltages and the input voltage, which is two times higher than the supply voltage when compared to a conventional interleaved differential dual-boost converter. This converter reduces the stress on the capacitor with reference to the conventional interleaved differential boost converter for the same conversion gain. This prototype is considered and the developed approach is applied, after which the experimental results are obtained. This converter has potential for application in areas such as renewable energy conversion and electric vehicles.


2022 ◽  
Vol 12 (1) ◽  
pp. 69
Author(s):  
Asad Muneer ◽  
Ahsan Fayyaz ◽  
Shahid Iqbal ◽  
Muhammad Waqas Jabbar ◽  
Arslan Qaisar ◽  
...  

This paper introduces and uses a single-phase, high-power LED driver with a battery backup. The buck–boost converter and reverse converter are both combined to achieve optimal performance. In the first part of the integrated circuit, the buck–boost converter is simply used to adjust the power when operating in the non-continuous operating mode. The reverse converter provides free voltage to the LEDs when released as a remote DC–DC converter. The battery backup cycle directly charges the battery at the same power as the LED driver required and provides charging power when there is no electricity. This paper demonstrates the functionality of the entire system and proves that it is an effective solution for new lighting applications.


10.6036/10089 ◽  
2022 ◽  
Vol 97 (1) ◽  
pp. 85-91
Author(s):  
Sathiyaraj Kasinathan ◽  
RAJARAM AYYASAMY

The renewable energy resources are widely used in various real time applications, which utilized the solar, wind, fuel cell, etc. From this, the energy management and controlling strategy improves the results. The conventional approach uses Quantum Tunneling PSO for optimization and it is managed with various utility on power grid system. The work utilized the solar and EM waves for energy management scheme and it utilized the controlling parameter by optimization algorithm. The drawback of conventional method is that, the hybrid system utilization and switching is performed with random selection and it not capable for hybrid resources of multiple array functioning. The proposed research work performed with the solar with MPPT tracking and EM with rectenna are utilized and with the help of neural network model, the PV and RF signal generations are stored as array and based on the switching duty cycle from the function of proposed particle swarm optimization, the boost converter act to provide the supply to grid. Through the inverter control, the model fed with the grid, which uses PI controlling with PWM signal generation. Based on the demand and grid utility the LC compensation improves the boost converter performance. The PV and RF signal generation utilized on the continuous utility and obtains the demand free grid circuit. By comparing with the proposed and existing approach, the proposed greenhouse management model obtains the better result. Overall simulink model is done with MATLAB 2018a. Keywords- PV module; EM waves; Rectenna; Proposed PSO; Feed Forward neural network; PI controller and grid utility;


Sign in / Sign up

Export Citation Format

Share Document