output voltage
Recently Published Documents


TOTAL DOCUMENTS

3351
(FIVE YEARS 1180)

H-INDEX

51
(FIVE YEARS 11)

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 610
Author(s):  
Girish Ganesan Ramanathan ◽  
Naomitsu Urasaki

DC-DC boost converters are necessary to extract power from solar panels. The output voltage from these panels is far lower than the utility voltage levels. One of the main functions of the boost converter is to provide a considerable step-up gain to interface the panel to the utility lines. There are several techniques used to boost the low panel voltage. Some of the issues faced by these topologies are a high duty ratio operation, complex design with multiple active switches and discontinuous input current that affects the power drawn from the panel. This paper presents a boost converter topology that combines the advantages of an interleaved structure, a voltage lift capacitor and a passive voltage multiplier network. A mathematical analysis of the proposed converter during its various modes of operation is presented. A 100 W prototype of the proposed converter is designed and tested. The prototype is controlled by a PIC16F18455 microcontroller. The converter is capable of achieving a gain of 10 without operating at extremely high duty ratios. The voltage stress of the switch is far lower than the maximum output voltage.


2022 ◽  
Vol 12 (2) ◽  
pp. 868
Author(s):  
Mahmoud Nassary ◽  
Enric Vidal-Idiarte ◽  
Javier Calvente

Electric mobility is nowadays one of the more important trends regarding pollution reduction and global warming due to fuel consumption. Big efforts are done in order to develop efficient and reliable power electronic systems for electric vehicles. In two stage on board-battery chargers, one way of improving efficiency is by means of ensuring the DC-DC isolated converter always operates in the nominal input/output voltage ratio, that could be achieved with a variable DC-link operation. In this paper, a four-switch buck-boost based AC/DC converter is deeply analyzed in order to improve its dynamic performance, the power factor and the total harmonic distortion. The converter suffers from a non-minimum phase characteristic in different input–output transfer functions, which reduces the closed-loop bandwidth of the system. Therefore, after a deep converter analysis has been done, different solutions have been evaluated and tested. Finally, a control to different output transfer functions of the converter become minimum phase, which allows us to increase the system bandwidth and, consequently, high power factor, low harmonics distortion, single control structure and fast dynamics for wide output voltage range are achieved.


2022 ◽  
Vol 14 (2) ◽  
pp. 929
Author(s):  
Md Reyaz Hussan ◽  
Mohammad Irfan Sarwar ◽  
Adil Sarwar ◽  
Mohd Tariq ◽  
Shafiq Ahmad ◽  
...  

Multilevel inverters (MLIs) are capable of producing high-quality output voltage and handling large amounts of power. This reduces the size of the filter while also simplifying the circuitry. As a result, they have a wide range of applications in industries, particularly in smart grids. The input voltage boosting feature is required to use the MLI with renewable energy. Moreover, many components are required to get higher output voltage levels that add weight and cost to the circuit. Numerous MLI topologies have been identified to minimize the losses, device count, and device ratings. A seven-level modified H-bridge inverter with a reduced component count, and reduced THD is presented in this paper. Two DC sources with six IGBTs have been used to generate a seven-level output voltage, and the Aquila Optimizer (AO) has been implemented to get the regulated output. MATLAB/Simulink environment has been used for designing the simulation model. Furthermore, the simulation result has been validated in the laboratory on a hardware setup using the DSP-TMS320F28335 Launchpad. With the reduced number of switching devices as well as the dc supply, the size of the inverter is compacted and becomes more economical.


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 264
Author(s):  
Dogga Raveendhra ◽  
Poojitha Rajana ◽  
Kalamchety Srinivasa Ravi Kumar ◽  
Praveen Jugge ◽  
Ramesh Devarapalli ◽  
...  

A step-up for a non-isolated interleaved differential capacitor clamped boost (IDCCB) DC–DC converter is proposed in this manuscript. Because of its ability to produce high voltage gains, it is used in high-power applications. This converter’s modelling and control design are applicable to any number of phases. A six-phase interleaved differential capacitor clamped boost prototype is tested in this work, with an input voltage of 60 V, an output voltage of 360 V, and a nominal output power of 2.2 kW. The components of the converter are placed and controlled in such a way that the output voltage is the sum of the two capacitor voltages and the input voltage, which is two times higher than the supply voltage when compared to a conventional interleaved differential dual-boost converter. This converter reduces the stress on the capacitor with reference to the conventional interleaved differential boost converter for the same conversion gain. This prototype is considered and the developed approach is applied, after which the experimental results are obtained. This converter has potential for application in areas such as renewable energy conversion and electric vehicles.


2022 ◽  
Author(s):  
Norbert Sailer ◽  
Inge Siegl ◽  
Markus Haberler ◽  
Christoph Steffan

A floating differential DAC expands the output voltage range for electrochemical measurements


Scanning ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-7
Author(s):  
Xiaochao Tian ◽  
Zhicong Wang ◽  
Sida Zhang ◽  
Shenfang Li ◽  
Jinlong Liu ◽  
...  

In order to solve the problem of waste heat collection from energy consumption, a thermal energy generation device combining shape memory alloy and piezoelectric materials has been designed. The shape memory alloy is heated and deformed to drive the drive wheel continuously, and the impact wheel is deformed against the piezoelectric cantilever beam during the rotation of the drive wheel to generate electricity. In this paper, the impact force generated by the impact wheel and the output voltage of the piezoelectric cantilever beam during the rotation process are given. Finally, the experimental test shows that the larger the radius of the drive wheel, the lower the impact force of the wheel and the lower the output voltage of the piezoelectric cantilever beam; the larger the diameter of the shape memory alloy wire, the higher the impact force of the wheel and the higher the output voltage of the piezoelectric cantilever beam; the more teeth of the drive wheel, the higher the impact frequency of the piezoelectric cantilever beam and the higher the output voltage. The maximum output voltage of the thermoelectric converter is 14.2 V, when the drive wheel radius is 13 mm, the shape memory alloy wire diameter is 1 mm and the number of impact wheel teeth is 6. The new structural design provides a new structural model for waste heat recovery and thermal energy generation technology. The new structural design provides a new approach and idea for waste heat recovery and thermal energy generation technology.


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 207
Author(s):  
Satyajit H. Chincholkar ◽  
Sangmesh V. Malge ◽  
Sanjaykumar L. Patil

The positive output elementary Luo (POEL) converter is a fourth-order DC–DC converter having highly non-linear dynamic characteristics. In this paper, a new dynamic output voltage feedback controller is proposed to achieve output voltage regulation of the POEL converter. In contrast to the state-of-the-art current-mode controllers for the high-order boost converters, the proposed control strategy uses only the output voltage state variable for feedback purposes. This eliminates the need for the inductor current sensor to reduce the cost and complexity of implementation. The controller design is accompanied by a strong theoretical foundation and detailed stability analyses to obtain some insight into the controlled system. The performance of the proposed controller is then compared with a multi-loop hysteresis-based sliding-mode controller (SMC) to achieve the output voltage-regulation of the same POEL converter. The schemes are compared concerning ease of implementation, in particular, the number of state variables and current sensors required for implementation and the closed-loop dynamic performance. Experimental results illustrating the features of both controllers in the presence of input reference and load changes are presented.


Machines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 47
Author(s):  
Kalamchety Srinivasa Ravi Kumar ◽  
Alagappan Pandian ◽  
Vedula Venkata Sastry ◽  
Dogga Raveendhra

In this paper, a new type of capacitor clamped coupled inductor bidirectional DC–DC converter is proposed, which offers high voltage gain with smooth starting current transients, as well as reduced stresses on the capacitor. Steady state operation, mathematical modelling, and state space modelling for the proposed converter are presented in detail. A simplified single voltage clamped circuit is developed to mitigate the voltage spikes caused due to the coupled inductor by recovering the leakage energy effectively. Moreover, the clamping capacitor helps in reducing the ripples in output voltage, which in effect significantly reduces the stress on the switch and offers less ripple content at the load terminals. Simulation of the proposed converter is carried out using Simulink/MATLAB for the conversion of 24V DC to 200V DC. For this conversion, simulation results have proven that there is reduction of 13.64% of capacitor voltage stresses. Further, under line varying conditions, converter responses have proven that there is a 119% and 25.25% reduction in input current and output voltage transients, respectively. Similarly, 25.25% and 76.5% transient reductions of input current are observed for line and control parameter variations. The hardware investigation of the converter was carried out with a 100 W, 24 V/200 V setup. The converter achieved efficiency of 93.8%. The observations supplement the simulation results.


2022 ◽  
Vol 14 (4) ◽  
pp. 130-139
Author(s):  
F. Makarenko ◽  
A. Yagodkin ◽  
Konstantin Zolnikov ◽  
O. Denisova

The theoretical propositions of the algebra of logic are considered. It is noted that the current microcircuitry based on the algebra of logic contains logical statements: true (yes) is a logical unit, false (no) is a logical zero. Based on the given logical function: ((ABC)×D + A×(BCD) + A×(BC)×D + (AB)×(CD), frontal, minimal, transformed minimal variants of the combination device are implemented, as well as minimized variants in the bases "AND-NOT" and "OR-NOT". A combination device based on import-substituting chips of 155, 176 series has been designed. The analysis of the obtained devices is made from the standpoint of technical and economic indicators, in particular, an assessment of the number of logic elements used, an assessment of the symmetry of the structure, as a result, a reduction in energy consumption, an increase in performance, improvements in parameters for reliability of functioning, a decrease in weight and size characteristics. Assuming that the law of change of the information parameter U1 is close to linear, taking into account the effect of temperature as boundary values for the elements of the applied microcircuits, taking the values -60 °C and +120°. Accordingly, the parametric reliability of the optimal implementation of the device according to the output voltage parameter is calculated. The conclusion is made about the inverse dependence of parametric reliability on temperature growth. A recommendation is given when evaluating parametric reliability for a number of other information parameters about the need to take into account both the number of chips used and the type of their interconnections.


Sign in / Sign up

Export Citation Format

Share Document