Power flow study and voltage stability analysis for distribution systems with distributed generation

Author(s):  
Haiyan Chen ◽  
Jinfu Chen ◽  
Dongyuan Shi ◽  
Xianzhong Duan
2009 ◽  
Vol 3 (1) ◽  
pp. 11-19
Author(s):  
P.V. Prasad ◽  
◽  
S. Sivanagaraju ◽  
B. Usha ◽  
◽  
...  

Author(s):  
Joao Alves da Silva Neto ◽  
Antonio Carlos Zambroni de Souza ◽  
Bruno de Nadai Nascimento ◽  
Eliane Valenca Nascimento De Lorenci

Author(s):  
Mostafa Elshahed ◽  
Mahmoud Dawod ◽  
Zeinab H. Osman

Integrating Distributed Generation (DG) units into distribution systems can have an impact on the voltage profile, power flow, power losses, and voltage stability. In this paper, a new methodology for DG location and sizing are developed to minimize system losses and maximize voltage stability index (VSI). A proper allocation of DG has to be determined using the fuzzy ranking method to verify best compromised solutions and achieve maximum benefits. Synchronous machines are utilized and its power factor is optimally determined via genetic optimization to inject reactive power to decrease system losses and improve voltage profile and VSI. The Augmented Lagrangian Genetic Algorithm with nonlinear mixed-integer variables and Non-dominated Sorting Genetic Algorithm have been implemented to solve both single/multi-objective function optimization problems. For proposed methodology effectiveness verification, it is tested on 33-bus and 69-bus radial distribution systems then compared with previous works.


2013 ◽  
Vol 16 (2) ◽  
pp. 43-53
Author(s):  
Chuong Trong Trinh ◽  
Anh Viet Truong ◽  
Tu Phan Vu

There are now a lot of distributed generation (DG) using asynchronous machines are connected to power distribution grid. These machines do not usually generate reactive power, even consume reactive power, so they generally affect the voltage stability of whole power grid, and can cause instability in itself it is no longer balanced by the torque to work. In this paper, we investigate the voltage stability problem of the asynchronous machine of wind turbines used in power distribution networks. From the static model of the asynchronous machine, this paper will apply the pragmatic criteria to analysis the voltage stability of the asynchronous machine based on the results of the power flow in power distribution network.


Sign in / Sign up

Export Citation Format

Share Document