Generic equivalent collector system parameters for large wind power plants

Author(s):  
Jacques Brochu ◽  
Christian Larose ◽  
Richard Gagnon
2002 ◽  
Vol 124 (4) ◽  
pp. 427-431 ◽  
Author(s):  
Yih-huei Wan ◽  
Demy Bucaneg,

To evaluate short-term wind power fluctuations and their impact on electric power systems, the National Renewable Energy Laboratory, in cooperation with Enron Wind, has started a project to record output power from several large commercial wind power plants at the 1-Hertz rate. This paper presents statistical properties of the data collected so far and discusses the results of data analysis. From the available data, we can already conclude that despite the stochastic nature of wind power fluctuations, the magnitudes and rates of wind power changes caused by wind speed variations are seldom extreme, nor are they totally random. Their values are bounded in narrow ranges. Power output data also show significant spatial variations within a large wind power plant. The data also offer encouraging evidence that accurate wind power forecasting is feasible. To the utility system, large wind power plants are not really random burdens. The narrow range of power level step changes provides a lot of information with which system operators can make short-term predictions of wind power. Large swings of wind power do occur, but those infrequent large changes (caused by wind speed changes) are always related to well-defined weather events, most of which can be accurately predicted in advance.


Sign in / Sign up

Export Citation Format

Share Document