Coordinated Control Method for DFIG-Based Wind Farm to Provide Primary Frequency Regulation Service

Author(s):  
ZHONGGUAN WANG ◽  
WENCHUAN WU
2014 ◽  
Vol 608-609 ◽  
pp. 915-919 ◽  
Author(s):  
Hong Xia Wu

Frequency is an important index of power quality, primary frequency regulation is of great significance for maintaining the grid frequency. In recent years, with the expansion of the power grid capacity and the continuous increase of the generator capacity, the large capacity units play a role is becoming more and more important in the primary frequency regulation of power grid. This paper takes ultra supercritical coal-fired units (1000MW) of a power plant of Hubei for example, primary frequency regulation control method, requency offset load curve and so on were studied through relevant test.


2018 ◽  
Vol 28 (5) ◽  
pp. e2527 ◽  
Author(s):  
Delin Wang ◽  
Ningning Ma ◽  
Yuan Gao ◽  
Yiming Hu ◽  
Chenxi Zhang

2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Mohamed Nadour ◽  
Ahmed Essadki ◽  
Tamou Nasser

The expansion of renewable generation has raised some red flags in terms of power system stability, control, and management. For instance, unlike traditional synchronous energy sources, the doubly-fed induction generator- (DFIG-) based wind turbines (WTs) do not instinctively act against frequency deviations. In fact, the power electronics interfacing the generator, merely controlled to warrant maximum wind power conversion, make its output power and mechanical speed immune to the characteristics of the electric network frequency. Moreover, significant wind power penetration (WPP) promotes the retirement of many traditional generation groups, consequently curtailing the power system corresponding inertia and displacing the primary reserves that are essential to retain the frequency within an acceptable range of variation. This paper explores different control approaches, using backstepping, allowing DFIG-based WTs to engage actively in frequency regulation using a coordinated control of the rotor speed and pitch angle to regulate the system during both partial- and full-load operation modes. The first method momentarily discharges part of the kinetic energy stored in the WT spinning masses, and the second method follows a deloaded operation characteristic, so as to keep a specific power reserve that can be automatically activated at the events of frequency excursions. A study case considering an isolated power system that consists of synchronous generators, DFIG-based wind farm, static load, and a sudden frequency disturbance was performed. The simulation result in a Matlab/Simulink environment highlights the robustness and capability of the coordinated control scheme to furnish, under variant operation conditions, active power aid, consequently lifting the frequency nadir up to a superior level than that obtained with 0% wind power penetration in the system.


Sign in / Sign up

Export Citation Format

Share Document