flywheel energy storage system
Recently Published Documents


TOTAL DOCUMENTS

535
(FIVE YEARS 103)

H-INDEX

34
(FIVE YEARS 4)

2022 ◽  
Vol 9 ◽  
Author(s):  
Zhongrui Li ◽  
Ziling Nie ◽  
Jie Xu ◽  
Huayu Li ◽  
Sheng Ai

Flywheel energy storage system is a popular energy storage technology, in which inverters are the center of electrical energy conversion, directly affecting the power capacity. Parallel operation of three-level inverters is an effective approach to achieve larger motor drive power and the interleaved operation can improve the harmonic characteristics. However, harmonic analysis models of the interleaved parallel three-level inverters are rare in the literature and how the neutral-point potential imbalance affects the harmonics characteristics has not been discussed. This article establishes the harmonic calculation for balanced and unbalanced neutral-point potential through the five-level voltage capability of the interleaved parallel three-level inverters. Moreover, a neutral-point potential control method based on zero-sequence voltage injection is proposed. The implement process of the method is proposed, and how the operating frequency affect the ability of the neutral-point potential balance is studied. Finally, the simulation and experiment results verify the feasibility and practicability of the established harmonic analysis models and the neutral-point potential control method.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7195
Author(s):  
Peter Haidl ◽  
Armin Buchroithner

The bearings of a flywheel energy storage system (FESS) are critical machine elements, as they determine several important properties such as self-discharge, service life, maintenance intervals and most importantly cost. This paper describes the design of a low-cost, low-loss bearing system for a 5 kWh/100 kW FESS based on analytical, numerical and experimental methods. The special operating conditions of the FESS rotor (e.g., high rotational speeds, high rotor mass, vacuum) do not allow isolated consideration of the bearings alone, but require a systematic approach, taking into account aspects of rotor dynamics, thermal management, bearing loads and lubrication. The proposed design incorporates measures to mitigate both axial and radial bearing loads, by deploying resilient bearing seats and a lifting magnet for rotor weight compensation. As a consequence of minimized external loading, bearing kinematics also need to be considered during the design process. A generally valid, well-structured guideline for the design of such low-loss rolling bearing systems is presented and applied to the 5 kWh/100 kW FESS use case.


Author(s):  
Xiao Ling ◽  
He Xiwu ◽  
Cheng Wenjie ◽  
Li Ming

A new type of three degrees of freedom axial-radial hybrid magnetic bearing (3-DOF ARHMB) with compact structure, shorter axial length and smaller volume is proposed for the flywheel energy storage system. The axial direction adopts the permanent magnet biased thrust bearing (PMB) made of soft magnetic composite materials (SMCs). In the radial direction, the laminated structure is used to reduce the eddy current, and the Halbach array is introduced to strengthen the magnetic density of the radial air gap. Firstly, the dynamic magnetic flux distribution of the 3-DOF ARHMB is analyzed by the finite element method (FEM). Based on the equivalent magnetic circuit method, the equivalent reluctance model with comprehensive consideration of eddy current effect and magnetic leakage effect is established, and then the frequency responses are analyzed. Secondly, a constraint model coupled with structural parameters, equivalent reluctance and magnetic leakage coefficient is established, and an adaptive particle swarm optimization algorithm (APSO) is used to optimize the bearing parameters. Finally, based on the equivalent reluctance model, the axial and radial force-current factor and force-displacement factor are derived, and the dynamic characteristics of bearings with different structures and materials are compared and analyzed. The results show that the new 3-DOF ARHMB made of SMCs can provide much larger and more stable magnetic force and larger bandwidth than that made of carbon steel materials, and has better dynamic characteristics under higher-frequency conditions, which can meet the industrial requirements of flywheel energy storage system.


Sign in / Sign up

Export Citation Format

Share Document