Hybrid battery charging system using solar PV and utility grid

Author(s):  
Dhiwaakar Purusothaman S R R ◽  
Ramesh Rajesh ◽  
Karan K Bajaj ◽  
Vineeth Vijayaraghavan ◽  
Venkatesan M
2019 ◽  
Vol 8 (2) ◽  
pp. 3431-3443 ◽  

The proposed system facilitates uninterruptable charging of a photovoltaic (PV) fed plug-in electric vehicle (EV) battery charging system irrespective of solar irradiation conditions by integrating utility grid to the battery charging system. The system employs bidirectional cycloconverter (BDCC) in order to use utility grid as source or sink during different modes of operation which depends on the availability of solar power. During low irradiation condition, the utility grid acts as a backup source in order to facilitate uninterruptable charging of the EV battery. When surplus power is generated from the PV panel, it is fed to the utility grid, which acts as sink in this mode. For uninterruptable EV battery charging, the controller operates the switches and relays in the proposed system corresponding to solar irradiation level. The available literatures define complex control strategies which are solved in this proposed system by adopting a simple dynamic control algorithm. The simulation of the proposed system has been carried out using PSIM simulation software and experimental prototype has been designed, developed and tested for different modes of operations to validate the efficacy of the proposed system.


2019 ◽  
Vol 3 (1) ◽  
pp. 118-126 ◽  
Author(s):  
Prihangkasa Yudhiyantoro

This paper presents the implementation fuzzy logic control on the battery charging system. To control the charging process is a complex system due to the exponential relationship between the charging voltage, charging current and the charging time. The effective of charging process controller is needed to maintain the charging process. Because if the charging process cannot under control, it can reduce the cycle life of the battery and it can damage the battery as well. In order to get charging control effectively, the Fuzzy Logic Control (FLC) for a Valve Regulated Lead-Acid Battery (VRLA) Charger is being embedded in the charging system unit. One of the advantages of using FLC beside the PID controller is the fact that, we don’t need a mathematical model and several parameters of coefficient charge and discharge to software implementation in this complex system. The research is started by the hardware development where the charging method and the combination of the battery charging system itself to prepare, then the study of the fuzzy logic controller in the relation of the charging control, and the determination of the parameter for the charging unit will be carefully investigated. Through the experimental result and from the expert knowledge, that is very helpful for tuning of the  embership function and the rule base of the fuzzy controller.


2021 ◽  
Vol 22 (1) ◽  
pp. 101-111
Author(s):  
Kamal Singh ◽  
Anjanee Kumar Mishra ◽  
Bhim Singh ◽  
Kuldeep Sahay

Abstract This work is targeted to design an economical and self-reliant solar-powered battery charging scheme for light electric vehicles (LEV’s). The single-ended primary inductance converter (SEPIC) is utilized to enhance the performance of solar power and battery charging at various solar irradiances. Various unique attributes of a SEPIC converter offer the effective charging arrangement for a self-reliant off-board charging system. Further, the continuous conduction mode (CCM) function of the converter minimizes the elementary stress and keeps to maintain the minimum ripples in solar output parameters. A novel maximum power point tracking (MPPT) approach executed in the designed system requires only the battery current to track the maximum power point (MPP) at various weather situations. Both the simulated and real-time behaviors of the developed scheme are examined utilizing a battery pack of 24 V and 100 Ah ratings. These responses verify the appropriateness of the designed system for an efficient off-board charging system for LEV’s.


Author(s):  
Kamal Singh ◽  
Aniket Anand ◽  
Anjanee Kumar Mishra ◽  
Bhim Singh ◽  
Kuldeep Sahay
Keyword(s):  
Solar Pv ◽  

Sign in / Sign up

Export Citation Format

Share Document