conduction mode
Recently Published Documents


TOTAL DOCUMENTS

806
(FIVE YEARS 189)

H-INDEX

43
(FIVE YEARS 5)

2022 ◽  
Vol 148 ◽  
pp. 107718
Author(s):  
Yongcui Mi ◽  
Satyapal Mahade ◽  
Fredrik Sikström ◽  
Isabelle Choquet ◽  
Shrikant Joshi ◽  
...  

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 66
Author(s):  
Tatiano Busatto ◽  
Sarah K. Rönnberg ◽  
Math H. J. Bollen

Harmonic modeling of low-voltage networks with many devices requires simple but accurate models. This paper investigates the advantages and drawbacks of such models to predict the current harmonics created by single-phase full-bridge rectifiers. An overview is given of the methods, limiting the focus to harmonic analysis. The error of each method, compared to an accurate numerical simulation model, is quantified in frequency and time domain considering realistic input scenarios, including background voltage distortion and different system impedances. The results of the comparison are used to discuss the applicability of the models depending on the harmonic studies scale and the required level of detail. It is concluded that all models have their applicability, but also limitations. From the simplest and fastest model, which does not require a numerical solution, to the more accurate one that allows discontinuous conduction mode to be included, the trade-off involves accuracy and computational complexity.


2021 ◽  
Vol 11 (6) ◽  
pp. 7922-7926
Author(s):  
D. Bakria ◽  
M. Azzouzi ◽  
D. Gozim

The voltage controlled buck converter by constant-frequency pulse-width modulation in continuous conduction mode gives rise to a variety of nonlinear behaviors depending on the circuit parameters values, which complicate their analysis and control. In this paper, a description of the DC/DC buck converter and an overview of some of its chaotic dynamics is presented. A solution based on the optimized PID controller is suggested to eliminate the observed nonlinear phenomena and to enhance the dynamics of the converter. The parameters of the controller are optimized with the Spotted Hyena Optimizer (SHO) which uses the sum of the error between the reference voltage and the output voltage as well as the error between the values of the inductor current in every switch opening instant to determine the fitness of each solution. The simulations results in MATLAB proved the efficiency of the proposed solution.


2021 ◽  
pp. 0309524X2110605
Author(s):  
Mohamed Bendaoud

This paper presents an approach to design the sliding mode control for an AC-DC converter, consisting of a diode rectifier in series with a boost converter. The results obtained show that this converter with the proposed control law can be used to control the extraction of mechanical power when connecting the permanent magnet synchronous generator (PMSG) to a wind turbine. The boost converter operates in discontinuous conduction mode (DCM) in order to reduce the total harmonic distortion (THD) of the currents in the PMSG. To verify the performance of the proposed method, a simulation study is performed.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7480
Author(s):  
Georgios Christidis ◽  
Anastasios Nanakos ◽  
Emmanuel Tatakis

The flyback converter has been widely used in Photovoltaic microinverters, operating either in Discontinuous, Boundary, or Continuous Conduction Mode (DCM, BCM, CCM). The recently proposed hybrid DBCM operation inherits the merits of both DCM and BCM. In this work, the necessary analytical equations describing the converter operation for any given condition under DBCM are derived, and are needed due to the hybrid nature of the modulation strategy during each sinusoidal wave. Based on this analysis, a design optimization sequence used to maximize the weighted efficiency of the inverter under DBCM is then applied. The design procedure is based on a power loss analysis for each converter component and focuses on the appropriate selection of the converter parameters. To achieve this, accurate, fully parameterized loss models of the converter components are implemented. The power loss analysis is then validated by applying the optimization methodology to build an experimental prototype operating in DBCM.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7434
Author(s):  
Emerson Madrid ◽  
Duberney Murillo-Yarce ◽  
Carlos Restrepo ◽  
Javier Muñoz ◽  
Roberto Giral

High-order switched DC-DC converters, such as SEPIC, Ćuk and Zeta, are classic energy processing elements, which can be used in a wide variety of applications due to their capacity to step-up and/or step-down voltage characteristic. In this paper, a novel methodology for analyzing the previous converters operating in discontinuous conduction mode (DCM) is applied to obtain full-order dynamic models. The analysis is based on the fact that inductor currents have three differentiated operating sub-intervals characterized by a third one in which both currents become equal, which implies that the current flowing through the diode is zero (DCM). Under a small voltage ripple hypothesis, the currents of all three converters have similar current piecewise linear shapes that allow us to use a graphical method based on the triangular shape of the diode current to obtain the respective non-linear average models. The models’ linearization around their steady-state operating points yields full-order small-signal models that reproduce accurately the dynamic behavior of the corresponding switched model. The proposed methodology is applicable to the proposed converters and has also been extended to more complex topologies with magnetic coupling between inductors and/or an RC damping network in parallel with the intermediate capacitor. Several tests were carried out using simulation, hardware-in-the-loop, and using an experimental prototype. All the results validate the theoretical models.


2021 ◽  
Vol 12 ◽  
pp. 132-140
Author(s):  
Jawad K. Raham ◽  
Hassan A. Sadiq

The Flyback inverter is a single-stage power inverter which represent an attractive solution for photovoltaic (PV) grid-tied inverter application. The main advantages of a current-source flyback inverter are high power density and high efficiency due to its small, as well as low total harmonic distortion (THD) operation. However, a flyback topology works with Discontinuous Conduction Mode (DCM) control strategy has lower efficiency and poor THD values. In this paper, an efficient current-source flyback inverter topology works with Boundary Conduction Mode (BCM) control strategy is presented. Besides, an efficient incremental conductance (IC) maximum power point tracking (MPPT) is used to extract the maximum power from the PV module. To verify the proposed control a power simulator (PSIM) software is used. As a result, the simulation results indicates that the BCM control is more efficient than the DCM method for various weather conditions. Finally, the proposed BCM strategy is compared with DCM control in terms of THD and thus it is achieved lower THD contain in the injection current of grid.


Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2588
Author(s):  
Sen-Tung Wu ◽  
Yu-Ting Cheng

This paper proposes an AC/DC single-stage structure by integrating a boost topology and an active clamp flyback (ACF) circuit with power-factor-correction (PFC) function. The PFC function can be achieved by controlling a boost PFC topology operated in the discontinuous conduction mode. With the coordination of active clamping components, a resonant technique is obtained and zero-voltage-switching (ZVS) can be achieved. The proposed converter is combined with the advantages of: (1) compared with two-stage circuit, a single stage circuit decreases the component of the main circuit and reduces the complexity of the control circuit; (2) a boost topology with PFC function operated in discontinuous conduction mode can be accomplished without adding any current detecting technique or detecting input signal; (3) by using the inductor from the PFC stage, ZVS function can be achieved without any additional inductor; (4) the increment of switching frequency facilitates the optimization of power density; (5) the conducting loss at the secondary side can be reduced by adding the synchronous rectification; (6) in this proposed scheme, the dual transformers with series-parallel connection are utilized, the current at the secondary side can be shared for lowering the conduction loss of the synchronous transistors. Finally, a prototype converter with AC 110 V input and DC 19 V/6.32 A (120 W) output under 300 kHz switching frequency is implemented. The efficiency of the proposed converter reaches 88.20% and 0.984 power factor in full load condition.


Sign in / Sign up

Export Citation Format

Share Document