On the open-loop solution of linear stochastic optimal control problems

1984 ◽  
Vol 29 (6) ◽  
pp. 562-564 ◽  
Author(s):  
J. Lasserre ◽  
C. Bes ◽  
F. Roubellat
2020 ◽  
Vol 26 ◽  
pp. 41
Author(s):  
Tianxiao Wang

This article is concerned with linear quadratic optimal control problems of mean-field stochastic differential equations (MF-SDE) with deterministic coefficients. To treat the time inconsistency of the optimal control problems, linear closed-loop equilibrium strategies are introduced and characterized by variational approach. Our developed methodology drops the delicate convergence procedures in Yong [Trans. Amer. Math. Soc. 369 (2017) 5467–5523]. When the MF-SDE reduces to SDE, our Riccati system coincides with the analogue in Yong [Trans. Amer. Math. Soc. 369 (2017) 5467–5523]. However, these two systems are in general different from each other due to the conditional mean-field terms in the MF-SDE. Eventually, the comparisons with pre-committed optimal strategies, open-loop equilibrium strategies are given in details.


Author(s):  
Christelle Dleuna Nyoumbi ◽  
Antoine Tambue

AbstractStochastic optimal principle leads to the resolution of a partial differential equation (PDE), namely the Hamilton–Jacobi–Bellman (HJB) equation. In general, this equation cannot be solved analytically, thus numerical algorithms are the only tools to provide accurate approximations. The aims of this paper is to introduce a novel fitted finite volume method to solve high dimensional degenerated HJB equation from stochastic optimal control problems in high dimension ($$ n\ge 3$$ n ≥ 3 ). The challenge here is due to the nature of our HJB equation which is a degenerated second-order partial differential equation coupled with an optimization problem. For such problems, standard scheme such as finite difference method losses its monotonicity and therefore the convergence toward the viscosity solution may not be guarantee. We discretize the HJB equation using the fitted finite volume method, well known to tackle degenerated PDEs, while the time discretisation is performed using the Implicit Euler scheme.. We show that matrices resulting from spatial discretization and temporal discretization are M-matrices. Numerical results in finance demonstrating the accuracy of the proposed numerical method comparing to the standard finite difference method are provided.


2021 ◽  
Vol 6 (4) ◽  
pp. 3053-3079
Author(s):  
Christelle Dleuna Nyoumbi ◽  
◽  
Antoine Tambue ◽  
◽  

Sign in / Sign up

Export Citation Format

Share Document