Outsourcing Proofs of Retrievability

Author(s):  
Frederik Armknecht ◽  
Jens-Matthias Bohli ◽  
Ghassan Karame ◽  
Wenting Li
2020 ◽  
Vol 63 (8) ◽  
pp. 1216-1230 ◽  
Author(s):  
Wei Guo ◽  
Sujuan Qin ◽  
Jun Lu ◽  
Fei Gao ◽  
Zhengping Jin ◽  
...  

Abstract For a high level of data availability and reliability, a common strategy for cloud service providers is to rely on replication, i.e. storing several replicas onto different servers. To provide cloud users with a strong guarantee that all replicas required by them are actually stored, many multi-replica integrity auditing schemes were proposed. However, most existing solutions are not resource economical since users need to create and upload replicas of their files by themselves. A multi-replica solution called Mirror is presented to overcome the problems, but we find that it is vulnerable to storage saving attack, by which a dishonest provider can considerably save storage costs compared to the costs of storing all the replicas honestly—while still can pass any challenge successfully. In addition, we also find that Mirror is easily subject to substitution attack and forgery attack, which pose new security risks for cloud users. To address the problems, we propose some simple yet effective countermeasures and an improved proofs of retrievability and replication scheme, which can resist the aforesaid attacks and maintain the advantages of Mirror, such as economical bandwidth and efficient verification. Experimental results show that our scheme exhibits comparable performance with Mirror while achieving high security.


2018 ◽  
Vol 11 (4) ◽  
pp. 685-698 ◽  
Author(s):  
Zhengwei Ren ◽  
Lina Wang ◽  
Qian Wang ◽  
Mingdi Xu

2018 ◽  
Vol 2018 ◽  
pp. 1-19 ◽  
Author(s):  
Lu Rao ◽  
Tengfei Tu ◽  
Hua Zhang ◽  
Qiaoyan Wen ◽  
Jia Xiao

Remote data auditing service is important for mobile clients to guarantee the intactness of their outsourced data stored at cloud side. To relieve mobile client from the nonnegligible burden incurred by performing the frequent data auditing, more and more literatures propose that the execution of such data auditing should be migrated from mobile client to third-party auditor (TPA). However, existing public auditing schemes always assume that TPA is reliable, which is the potential risk for outsourced data security. Although Outsourced Proofs of Retrievability (OPOR) have been proposed to further protect against the malicious TPA and collusion among any two entities, the original OPOR scheme applies only to the static data, which is the limitation that should be solved for enabling data dynamics. In this paper, we design a novel authenticated data structure called bv23Tree, which enables client to batch-verify the indices and values of any number of appointed leaves all at once for efficiency. By utilizing bv23Tree and a hierarchical storage structure, we present the first solution for Dynamic OPOR (DOPOR), which extends the OPOR model to support dynamic updates of the outsourced data. Extensive security and performance analyses show the reliability and effectiveness of our proposed scheme.


Sign in / Sign up

Export Citation Format

Share Document