Improved Proofs Of Retrievability And Replication For Data Availability In Cloud Storage

2020 ◽  
Vol 63 (8) ◽  
pp. 1216-1230 ◽  
Author(s):  
Wei Guo ◽  
Sujuan Qin ◽  
Jun Lu ◽  
Fei Gao ◽  
Zhengping Jin ◽  
...  

Abstract For a high level of data availability and reliability, a common strategy for cloud service providers is to rely on replication, i.e. storing several replicas onto different servers. To provide cloud users with a strong guarantee that all replicas required by them are actually stored, many multi-replica integrity auditing schemes were proposed. However, most existing solutions are not resource economical since users need to create and upload replicas of their files by themselves. A multi-replica solution called Mirror is presented to overcome the problems, but we find that it is vulnerable to storage saving attack, by which a dishonest provider can considerably save storage costs compared to the costs of storing all the replicas honestly—while still can pass any challenge successfully. In addition, we also find that Mirror is easily subject to substitution attack and forgery attack, which pose new security risks for cloud users. To address the problems, we propose some simple yet effective countermeasures and an improved proofs of retrievability and replication scheme, which can resist the aforesaid attacks and maintain the advantages of Mirror, such as economical bandwidth and efficient verification. Experimental results show that our scheme exhibits comparable performance with Mirror while achieving high security.

Author(s):  
Jin Han ◽  
Jing Zhan ◽  
Xiaoqing Xia ◽  
Xue Fan

Background: Currently, Cloud Service Provider (CSP) or third party usually proposes principles and methods for cloud security risk evaluation, while cloud users have no choice but accept them. However, since cloud users and cloud service providers have conflicts of interests, cloud users may not trust the results of security evaluation performed by the CSP. Also, different cloud users may have different security risk preferences, which makes it difficult for third party to consider all users' needs during evaluation. In addition, current security evaluation indexes for cloud are too impractical to test (e.g., indexes like interoperability, transparency, portability are not easy to be evaluated). Methods: To solve the above problems, this paper proposes a practical cloud security risk evaluation method of decision-making based on conflicting roles by using the Analytic Hierarchy Process (AHP) with Aggregation of Individual priorities (AIP). Results: Not only can our method bring forward a new index system based on risk source for cloud security and corresponding practical testing methods, but also can obtain the evaluation result with the risk preferences of conflicting roles, namely CSP and cloud users, which can lay a foundation for improving mutual trusts between the CSP and cloud users. The experiments show that the method can effectively assess the security risk of cloud platforms and in the case where the number of clouds increased by 100% and 200%, the evaluation time using our methodology increased by only by 12% and 30%. Conclusion: Our method can achieve consistent decision based on conflicting roles, high scalability and practicability for cloud security risk evaluation.


Author(s):  
Prerna Agarwal Et. al.

A comprehensive and functional approach is built in cloud computing, which can be used by cloud users to exchange information. Cloud service providers (CSPs) can transfer through server services through powerful data centres to cloud users. Data is protected through authentication of cloud users and CSPs can have outsourced data file sharing security assurance. The continuing change in cloud users, especially unauthenticated users or third parties poses a critical problem in ensuring privacy in data sharing. The multifunctional exchange of information while protecting information and personal protection from unauthorized or other third-party users remains a daunting challenge


Author(s):  
Khalid Al-Begain ◽  
Michal Zak ◽  
Wael Alosaimi ◽  
Charles Turyagyenda

The chapter presents current security concerns in the Cloud Computing Environment. The cloud concept and operation raise many concerns for cloud users since they have no control of the arrangements made to protect the services and resources offered. Additionally, it is obvious that many of the cloud service providers will be subject to significant security attacks. Some traditional security attacks such as the Denial of Service attacks (DoS) and distributed DDoS attacks are well known, and there are several proposed solutions to mitigate their impact. However, in the cloud environment, DDoS becomes more severe and can be coupled with Economical Denial of Sustainability (EDoS) attacks. The chapter presents a general overview of cloud security, the types of vulnerabilities, and potential attacks. The chapter further presents a more detailed analysis of DDoS attacks' launch mechanisms and well-known DDoS defence mechanisms. Finally, the chapter presents a DDoS-Mitigation system and potential future research directions.


2018 ◽  
pp. 1511-1554
Author(s):  
Khalid Al-Begain ◽  
Michal Zak ◽  
Wael Alosaimi ◽  
Charles Turyagyenda

The chapter presents current security concerns in the Cloud Computing Environment. The cloud concept and operation raise many concerns for cloud users since they have no control of the arrangements made to protect the services and resources offered. Additionally, it is obvious that many of the cloud service providers will be subject to significant security attacks. Some traditional security attacks such as the Denial of Service attacks (DoS) and distributed DDoS attacks are well known, and there are several proposed solutions to mitigate their impact. However, in the cloud environment, DDoS becomes more severe and can be coupled with Economical Denial of Sustainability (EDoS) attacks. The chapter presents a general overview of cloud security, the types of vulnerabilities, and potential attacks. The chapter further presents a more detailed analysis of DDoS attacks' launch mechanisms and well-known DDoS defence mechanisms. Finally, the chapter presents a DDoS-Mitigation system and potential future research directions.


2021 ◽  
Vol 11 (1) ◽  
pp. 21-51
Author(s):  
Rohit Kumar Tiwari ◽  
Rakesh Kumar

Cloud computing has become a business model and organizations like Google, Amazon, etc. are investing huge capital on it. The availability of many organizations in the cloud has posed a challenge for cloud users to choose a best cloud service. To assist the cloud users, we have proposed a MCDM-based cloud service selection framework to choose a best service provider based on QoS requirement. The cloud service selection methods based on TOPSIS suffers from rank reversal problem as it ranks optimal service provider to non-optimal on addition or removal of a service provider and deludes the cloud user. Therefore, a robust and efficient TOPSIS (RE-TOPSIS)-based novel framework has been proposed to rank the cloud service providers using QoS provided by them and cloud user's priority for each QoS. The proposed framework is robust to rank reversal problem and its effectiveness has been demonstrated through a case study performed on a real dataset. Sensitivity analysis has also been performed to show the robustness against the rank reversal phenomenon.


2013 ◽  
Vol 427-429 ◽  
pp. 2377-2382
Author(s):  
Ying Liu ◽  
Yan Wang ◽  
Xian You Sun

Among the wide range of cloud service providers with different performance characteristics, in order to let the cloud users find cloud services which satisfy its performance preferences and specific trust levels,it needs to establish a reasonable and scientific cloud service trust evaluation system. This paper introduces a membership degree theory into trust evaluation model. First, it designs the trust evaluation system framework of cloud services, and establishes a trust evaluation model of cloud services. Next, it calculates the trust level of cloud services with the comprehensive trust cloud center of gravity evaluation method (CCGE). Finally, the experiment results show that this model can build precise trust relationship between cloud users and cloud services based on users performance demands.


2018 ◽  
Vol 8 (4) ◽  
pp. 118-133 ◽  
Author(s):  
Fahim Youssef ◽  
Ben Lahmar El Habib ◽  
Rahhali Hamza ◽  
Labriji El Houssine ◽  
Eddaoui Ahmed ◽  
...  

Cloud users can have access to the service based on “pay as you go.” The daily increase of cloud users may decrease the performance, the availability and the profitability of the material and software resources used in cloud service. These challenges were solved by several load balancing algorithms between the virtual machines of the data centers. In order to determine a new load balancing improvement; this article's discussions will be divided into two research axes. The first, the pre-classification of tasks depending on whether their characteristics are accomplished or not (Notion of Levels). This new technique relies on the modeling of tasks classification based on an ascending order using techniques that calculate the worst-case execution time (WCET). The second, the authors choose distributed datacenters between quasi-similar virtual machines and the modeling of relationship between virtual machines using the pre-scheduling levels is included in the data center in terms of standard mathematical functions that controls this relationship. The key point of the improvement, is considering the current load of the virtual machine of a data center and the pre-estimation of the execution time of a task before any allocation. This contribution allows cloud service providers to improve the performance, availability and maximize the use of virtual machines workload in their data centers.


2021 ◽  
Vol 40 (2) ◽  
pp. 308-320
Author(s):  
S.A. Akinboro ◽  
U.J. Asanga ◽  
M.O. Abass

Data stored in the cloud are susceptible to an array of threats from hackers. This is because threats, hackers and unauthorized access are not supported by the cloud service providers as implied. This study improves user privacy in the cloud system, using privacy with non-trusted provider (PNTP) on software and platform as a service model. The subscribers encrypt the data using user’s personal Advanced Encryption Standard (AES) symmetric key algorithm and send the encrypted data to the storage pool of the Cloud Service Provider (CSP) via a secure socket layer. The AES performs a second encryption on the data sent to the cloud and generates for the subscriber a key that will be used for decryption of previously stored data. The encryption and decryption keys are managed by the key server and have been hardcoded into the PNTP system. The model was simulated using the Stanford University multimedia dataset and benchmarked with a Privacy with Trusted cloud Provider (PTP) model using encryption time, decryption time and efficiency (brute force hacking) as parameters. Results showed that it took a longer time to access the user files in PNTP than in the PTP system. The brute force hacking took a longer time (almost double) to access data stored on the PNTP system. This will give subscribers a high level of control over their data and increase the adoption of cloud computing by businesses and organizations with highly sensitive information.


2020 ◽  
Vol 8 (5) ◽  
pp. 1627-1631

Confidentiality, Privacy and Protection of data (CPPD) are the major challenges in the cloud environment for cloud users such as industrials and organizations. Hence major companies are loath to migrate to cloud and also still using the private cloud because of lock in CPPD of cloud. Cloud Service Providers (CSP) are unable to elucidate strength of the storage and services due to lack of data security. To solve the above issue, we trust, algorithms are not the only solution for data security. In this regards, we suggest to change the architecture and develop a new mechanisms. In this paper, we are proposed two thinks. First is move to single cloud architecture to multiple cloud architecture and second is develop an innovative algorithm. And one more think also considered and proposed an inimitable mechanism to use an innovative algorithm in the multi cloud architecture for improving CPPD.


2016 ◽  
Vol 9 (2) ◽  
pp. 78-88
Author(s):  
C. S. Rajarajeswari ◽  
M. Aramudhan

Cloud computing is an innovative technology which provides services to users on-demand and pay per use. Since there are many providers in cloud, users get confused in selecting the optimal service provider for their tasks. To overcome this limitation, federated cloud management architecture was proposed. The proposed work provides a new federated cloud mechanism, in which Broker Manager takes the responsibility of providing optimal and ranked service provider for user requirements. To rank the service providers in the federated cloud, Differentiated Priority based Ranking algorithm is implemented at the level of BM. Attributes are differentiated based on their weights assigned by a user. Service providers are discovered and ranked based on the differentiated attributes. The proposed algorithm chooses the cloud service provider for execution, not only based on the rank list generated by the BM; but also based on the suggestion given by the user. The experimental result shows that the proposed algorithm improves the performance of resource provisioning than the existing model by 13%.


Sign in / Sign up

Export Citation Format

Share Document